Approximation Scheme for Lowest Outdegree Orientation and Graph Density Measures

  • Łukasz Kowalik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4288)


We deal with the problem of finding such an orientation of a given graph that the largest number of edges leaving a vertex (called the outdegree of the orientation) is small.

For any ε∈(0,1) we show an \(\tilde{O}(|E(G)|/\varepsilon)\) time algorithm which finds an orientation of an input graph G with outdegree at most ⌈(1+ε)d *⌉, where d * is the maximum density of a subgraph of G. It is known that the optimal value of orientation outdegree is ⌈d * ⌉.

Our algorithm has applications in constructing labeling schemes, introduced by Kannan et al. in [18] and in approximating such graph density measures as arboricity, pseudoarboricity and maximum density. Our results improve over the previous, 2-approximation algorithms by Aichholzer et al. [1] (for orientation / pseudoarboricity), by Arikati et al. [3] (for arboricity) and by Charikar [5] (for maximum density).


Approximation Scheme Maximum Density Additive Error Input Graph Sparse Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aichholzer, O., Aurenhammer, F., Rote, G.: Optimal graph orientation with storage applications. SFB-Report F003-51, SFB Optimierung und Kontrolle, TU Graz, Austria (1995)Google Scholar
  2. 2.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arikati, S.R., Maheshwari, A., Zaroliagis, C.D.: Efficient computation of implicit representations of sparse graphs. Discrete Appl. Math. 78(1-3), 1–16 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Brodal, G.S., Fagerberg, R.: Dynamic representations of sparse graphs. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 342–351. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Charikar, M.: Greedy approximation algorithms for finding dense components in a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 84–95. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chrobak, M., Eppstein, D.: Planar orientations with low out-degree and compaction of adjacency matrices. Theoretical Computer Science 86(2), 243–266 (1991)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Eppstein, D.: Arboricity and bipartite subgraph listing algorithms. Inf. Process. Lett. 51(4), 207–211 (1994)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Eppstein, D.: All maximal independent sets and dynamic dominance for sparse graphs. In: Proc. 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), pp. 451–459 (2005)Google Scholar
  10. 10.
    Even, S., Tarjan, R.E.: Network flow and testing graph connectivity. SIAM J. Comput. 4(4), 507–518 (1975)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Frank, A., Gyárfás, A.: How to orient the edges of a graph? In: Hajnal, A., Sós, V.T. (eds.) Proc. of the Fifth Hungarian Colloquium on Combinatorics, Keszthely, vol. I, pp. 353–364. North-Holland, Amsterdam (1976)Google Scholar
  12. 12.
    Gabow, H.: Upper degree-constrained partial orientations. In: Proc. 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006) (2006)Google Scholar
  13. 13.
    Gabow, H., Westermann, H.: Forests, frames, and games: algorithms for matroid sums and applications. In: Proc. of the 20th Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 407–421. ACM Press, New York (1988)CrossRefGoogle Scholar
  14. 14.
    Galil, Z., Naamad, A.: An O(EVlog2 V) algorithm for the maximal flow problem. J. Comput. System Sci. 21, 203–217 (1980)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algorithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Goldberg, A.V.: Finding a maximum density subgraph. Technical Report UCB/CSD-84-171, EECS Department, University of California, Berkeley (1984)Google Scholar
  17. 17.
    Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier. In: Proc. of the 38th Annual Symposium on Foundations of Computer Science (FOCS 1997), p. 2. IEEE Computer Society Press, Washington, DC, USA (1997)CrossRefGoogle Scholar
  18. 18.
    Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. In: Proc. of the 20th Annual ACM Symposium on Theory of Computing (STOC 1988), pp. 334–343. ACM Press, New York (1988)CrossRefGoogle Scholar
  19. 19.
    Kowalik, Ł., Kurowski, M.: Shortest path queries in planar graphs in constant time. In: Proc. 35th Symposium on Theory of Computing (STOC 2003), pp. 143–148. ACM, New York (2003)Google Scholar
  20. 20.
    Kozen, D.C.: The design and analysis of algorithms. Springer, New York (1992)Google Scholar
  21. 21.
    Nash-Williams, C.S.J.A.: Decomposition of finite graphs into forests. Journal of the London Mathematical Society 39, 12 (1964)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Picard, J.-C., Queyranne, M.: A network flow solution to some nonlinear 0-1 programming problems with application to graph theory. Networks 12, 141–159 (1982)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Łukasz Kowalik
    • 1
    • 2
  1. 1.Institute of InformaticsWarsaw UniversityWarsawPoland
  2. 2.Max-Planck-Institute für InformatikSaarbrückenGermany

Personalised recommendations