A Simple Message Passing Algorithm for Graph Partitioning Problems

  • Mikael Onsjö
  • Osamu Watanabe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4288)


Motivated by the belief propagation, we propose a simple and deterministic message passing algorithm for the Graph Bisection problem and related problems. The running time of the main algorithm is linear w.r.t. the number of vertices and edges. For evaluating its average-case correctness, planted solution models are used. For the Graph Bisection problem under the standard planted solution model with probability parameters p and r, we prove that our algorithm yields a planted solution with probability >1–δ if pr=Ω(n − 1/2log(n/δ)).


Bayesian Network Random Graph Belief Propagation Partitioning Problem Partition Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bop87]
    Boppana, R.B.: Eigenvalues and graph bisection: an average-case analysis. In: Proc. Symposium on Foundations of Computer Science, pp. 280–285 (1987)Google Scholar
  2. [Betal87]
    Bui, T., Chaudhuri, S., Leighton, F., Spiser, M.: Graph bisection algorithms with good average behavior. Combinatorica 7, 171–191 (1987)CrossRefMathSciNetGoogle Scholar
  3. [Coj05]
    Coja-Oghlan, A.: A spectral heuristic for bisecting random graphs. In: Proc. SODA 2005, pp. 850–859 (2005), (The journal version will appear Random Structures and Algorithms) Google Scholar
  4. [CK01]
    Condon, A., Karp, R.: Algorithms for graph partitioning on the planted partition model. Random Str. and Algorithms 18, 116–140 (2001)MATHCrossRefMathSciNetGoogle Scholar
  5. [DLP03]
    Dubhashi, D., Laura, L., Panconesi, A.: Analysis and experimental evaluation of a simple algorithm for collaborative filtering in planted partition models. In: Proc. FST TCS 2003, pp. 168–182 (2003)Google Scholar
  6. [DF89]
    Dyer, M.E., Frieze, A.M.: The solution of some random NP-hard problems in polynomial expected time. J. of Algorithms 10, 451–489 (1989)MATHCrossRefMathSciNetGoogle Scholar
  7. [GJ79]
    Garey, M.R., Johnson, D.S.: Computers and Intractability, Bell Telephone Laboratories, Incorporated (1979)Google Scholar
  8. [GJS76]
    Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theoret. Comput. Sci. 1, 237–267 (1976)MATHCrossRefMathSciNetGoogle Scholar
  9. [JS98]
    Jerrum, M., Sorkin, G.: The Metropolis algorithm for graph bisection. Discrete Appl. Math. 82(1-3), 155–175 (1998)MATHCrossRefMathSciNetGoogle Scholar
  10. [HSS03]
    Hahnloser, R., Seung, H., Slotine, J.: Permitted and forbidden sets in threshold-linear networks. Neural Computation 15, 621–638 (2003)MATHCrossRefGoogle Scholar
  11. [McS99]
    McSherry, F.: Spectral partition of random graphs. In: Proc. 40th IEEE Sympos. on Foundations of Computer Science (FOCS 1999), pp. 529–537. IEEE, Los Alamitos (1999)Google Scholar
  12. [Ons05]
    Onsjö, M.: Master Thesis (2005)Google Scholar
  13. [OW05]
    Onsjö, M., Watanabe, O.: Simple algorithms for graph partition problems, Research Report C-212, Dept. of Math. and Comput. Sci., Tokyo Inst. of Tech. (2005)Google Scholar
  14. [Pea88]
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mikael Onsjö
    • 1
  • Osamu Watanabe
    • 2
  1. 1.Dept. of Computer Sci. and Eng.Chalmers Univ. of TechnologySweden
  2. 2.Dept. of Math. and Comput. Sci.Tokyo Inst. of TechnologyJapan

Personalised recommendations