Non-cooperative Facility Location and Covering Games

  • Martin Hoefer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4288)


We study a general class of non-cooperative games coming from combinatorial covering and facility location problems. A game for k players is based on an integer programming formulation. Each player wants to satisfy a subset of the constraints. Variables represent resources, which are available in costly integer units and must be bought. The cost can be shared arbitrarily between players. Once a unit is bought, it can be used by all players to satisfy their constraints. In general the cost of pure-strategy Nash equilibria in this game can be prohibitively high, as both prices of anarchy and stability are in Θ(k). In addition, deciding the existence of pure Nash equilibria is NP-hard. These results extend to recently studied single-source connection games. Under certain conditions, however, cheap Nash equilibria exist: if the integrality gap of the underlying integer program is 1 and in the case of single constraint players. In addition, we present algorithms that compute cheap approximate Nash equilibria in polynomial time.


Nash Equilibrium Facility Location Cooperative Game Facility Location Problem Pure Nash Equilibrium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anshelevich, E., Dasgupta, A., Kleinberg, J., Roughgarden, T., Tardos, É., Wexler, T.: The price of stability for network design with fair cost allocation. In: Proc. 45th FOCS, pp. 295–304 (2004)Google Scholar
  2. 2.
    Anshelevich, E., Dasgupta, A., Tardos, É., Wexler, T.: Near-optimal network design with selfish agents. In: Proc. 35th STOC, pp. 511–520 (2003)Google Scholar
  3. 3.
    Cardinal, J., Hoefer, M.: Selfish serive installation in networks. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Deng, X., Ibaraki, T., Nagamochi, H.: Combinatorial optimization games. In: Proc. 8th SODA, pp. 720–729 (1997)Google Scholar
  5. 5.
    Devanur, N., Garg, N., Khandekar, R., Pandit, V., Saberi, A., Vazirani, V.: Price of anarchy, locality gap, and a network service provider game. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 1046–1055. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Devanur, N., Mihail, M., Vazirani, V.: Strategyproof cost-sharing mechanisms for set cover and facility location problems. In: Proc. 4th EC, pp. 108–114 (2003)Google Scholar
  7. 7.
    Eiselt, H., Laporte, G., Thisse, J.-F.: Competitive location models: A framework and bibliography. Transport. Sci. 27, 44–54 (1993)MATHCrossRefGoogle Scholar
  8. 8.
    Goemans, M., Skutella, M.: Cooperative facility location games. In: Proc. 11th SODA, pp. 76–85 (2000)Google Scholar
  9. 9.
    Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. J. Algorithms 31, 228–248 (1999)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hoefer, M.: Non-cooperative tree creation. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 517–527. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Immorlica, N., Mahdian, M., Mirrokni, V.: Limitations of cross-monotonic cost sharing schemes. In: Proc. 16th SODA, pp. 602–611 (2005)Google Scholar
  12. 12.
    Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.: Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM 50(6), 795–824 (2003)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Jain, K., Vazirani, V.: Applications of approximation algorithms to cooperative games. In: Proc. 33rd STOC, pp. 364–372 (2001)Google Scholar
  14. 14.
    Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Li, X., Sun, Z., Wang, W.: Cost sharing and strategyproof mechanisms for set cover games. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 218–230. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Mahdian, M., Ye, Y., Zhang, J.: Improved approximation algorithms for metric facility location problems. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) APPROX 2002. LNCS, vol. 2462, pp. 229–242. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Mettu, R., Plaxton, G.: The online median problem. SIAM J. Comp. 32(3), 816–832 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Miller, T., Friesz, T., Tobin, R.: Equilibrium Facility Location in Networks. Springer, Heidelberg (1996)Google Scholar
  19. 19.
    Pál, M., Tardos, É.: Group strategyproof mechanisms via primal-dual algorithms. In: Proc. 44th FOCS, pp. 584–593 (2003)Google Scholar
  20. 20.
    Sun, Z., Li, X., Wang, W., Chu, X.: Mechanism design for set cover games when elements are agents. In: Megiddo, N., Xu, Y., Zhu, B. (eds.) AAIM 2005. LNCS, vol. 3521, Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Vetta, A.: Nash equilibria in competitive societies with application to facility location, traffic routing and auctions. In: Proc. 43rd FOCS, p. 416 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martin Hoefer
    • 1
  1. 1.Department of Computer & Information ScienceKonstanz UniversityGermany

Personalised recommendations