Relations Between Two Common Types of Rectangular Tilings

  • Yusu Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4288)


Partitioning a multi-dimensional data set (array) into rectangular regions subject to some constraints (error measures) is an important problem arising from applications in parallel computing, databases, VLSI design, and so on. In this paper, we consider two most common types of partitioning used in practice: the Arbitrary partitioning and (p×p) partitioning, and study their relationships under three widely used error metrics: Max-Sum, Sum-SVar and Sum-SLift.


Optimal Partitioning Error Threshold Total Power Consumption Error Metrics Arbitrary Partitioning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anily, S., Federgruen, A.: Structured partitioning problems. Operations Research, 130–149 (1991)Google Scholar
  2. 2.
    Berman, P., Dasgupta, B., Muthukrishnan, S.: Exact size of binary space partitionings and improved rectangle tiling algorithms. SIAM J. Discrete Math. 15(2), 252–267 (2002)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berman, P., DasGupta, B., Muthukrishnan, S., Ramaswami, S.: Efficient approximation algorithms for tiling and packing problems with rectangles. J. Algorithms 41(2), 443–470 (2001)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bokhari, S.: Partitioning problems in paralle, pipelined, and distributed computing. IEEE Transactions on Computers 37, 38–57 (1988)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., Walker, D.: Solving problems on concurrent processors, vol. 1. Prentice-Hall, Englewood Cliffs (1998)Google Scholar
  6. 6.
    Grigni, M., Manne, F.: On the complexity of the generalized block distribution. In: Saad, Y., Yang, T., Ferreira, A., Rolim, J.D.P. (eds.) IRREGULAR 1996. LNCS, vol. 1117, pp. 319–326. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  7. 7.
    Khanna, S., Muthukrishnan, S., Paterson, M.: On approximating rectangle tiling and packing. In: SODA 1998: Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms, pp. 384–393 (1998)Google Scholar
  8. 8.
    Khanna, S., Muthukrishnan, S., Skiena, S.: Efficient array partitioning. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 616–626. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Lackey, D.E., Zuchowski, P.S., Bednar, T.R., Stout, D.W., Gould, S.W., Cohn, J.M.: Managing power and performance for system-on-chip designs using voltage islands. In: Proceedings of the 2002 IEEE/ACM international conference on Computer-aided design table of contents, pp. 195–202 (2002)Google Scholar
  10. 10.
    Lorys, K., Paluch, K.E.: New approximation algorithm for RTILE problem. Theor. Comput. Sci. 2-3(303), 517–537 (2003)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Manne, F.: Load Balancing in Parallel Sparse Matrix Computations. PhD thesis, Dept. of Informatics, Univ. of Bergen, Norway (1993)Google Scholar
  12. 12.
    Manne, F., Sorevik, T.: Partitioning an array onto a mesh of processors. In: Workshop on Applied Parallel Computing in Industrial Problems (1996)Google Scholar
  13. 13.
    Muthukrishnan, S., Poosala, V., Suel, T.: On rectangular partitionings in two dimensions: Algorithms, complexity, and applications. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 236–256. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Muthukrishnan, S., Suel, T.: Approximation algorithms for array partitioning problems. Journal of Algorithms 54, 85–104 (2005)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Poosala, V.: Histogram-based estimation techniques in databases. PhD thesis, Univ. of Wisconsin-Madison (1997)Google Scholar
  16. 16.
    Sharp, J.P.: Tiling multi-dimensional arrays. In: International Symposium on Fundamentals of Computation Theory, pp. 500–511 (1999)Google Scholar
  17. 17.
    Smith, A., Suri, S.: Rectangular tiling in multi-dimensional arrays. In: ACM/SIAM Symposium on Discrete Algorithms (SODA), pp. 786–794 (1999)Google Scholar
  18. 18.
    Wu, H., Liu, I., Wong, M.D.F., Wang, Y.: Post-placement voltage island generation under performance requirement. In: IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 309–316 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yusu Wang
    • 1
  1. 1.Dept. of Comp. Sci. and EngineeringOhio State UniversityColumbusUSA

Personalised recommendations