Optimal Construction of the City Voronoi Diagram

  • Sang Won Bae
  • Jae-Hoon Kim
  • Kyung-Yong Chwa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4288)


We address proximity problems in the presence of roads on the L 1 plane. More specifically, we present the first optimal algorithm for constructing the city Voronoi diagram. We apply the continuous Dijkstra paradigm to obtain an optimal algorithm for building a shortest path map for a given source, and then it extends to that for the city Voronoi diagram. Moreover, the algorithm applies to other generalized situations including metric spaces induced by roads and obstacles together.


Short Path Voronoi Diagram Transportation Network Event Distance Neighbor Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán, V.: Proximity problems for time metrics induced by the L 1 metric and isothetic networks. In: IX Encuetros en Geometria Computacional (2001)Google Scholar
  2. 2.
    Aichholzer, O., Aurenhammer, F., Palop, B.: Quickest paths, straight skeletons, and the city Voronoi diagram. In: Proc. 18th Annu. ACM Sympos. Comput. Geom., pp. 151–159 (2002)Google Scholar
  3. 3.
    Bae, S.W., Chwa, K.-Y.: Shortest paths and Voronoi diagrams with transportation networks under general distances. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 1007–1018. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Bae, S.W., Chwa, K.-Y.: Voronoi diagrams for a transportation network on the Euclidean plane. Internat. J. Comp. Geom. Appl. 16(2–3), 117–144 (2006)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bae, S.W., Kim, J.-H., Chwa, K.-Y.: L 1 shortest paths with isothetic roads. Technical Report CS-TR-2005-241, KAIST (2005)Google Scholar
  6. 6.
    Görke, R., Wolff, A.: Computing the city Voronoi diagram faster. In: Proc. 21st Euro. Workshop on Comput. Geom., pp. 155–158 (2005)Google Scholar
  7. 7.
    Mitchell, J.S.B.: L 1 shortest paths among polygonal obstacles in the plane. Algorithmica 8, 55–88 (1992)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Mitchell, J.S.B.: Shortest paths among obstacles in the plane. Internat. J. Comput. Geom. Appl. 6(3), 309–331 (1996)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ostrovsky-Berman, Y.: Computing transportation Voronoi diagrams in optimal time. In: Proc. 21st Euro. Workshop on Comput. Geom., pp. 159–162 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sang Won Bae
    • 1
  • Jae-Hoon Kim
    • 2
  • Kyung-Yong Chwa
    • 1
  1. 1.Div. of Computer Science, Dept. of EECSKorea Advanced Institute of Science and TechnologyDaejeonKorea
  2. 2.Div. of Computer EngineeringPusan University of Foreign StudiesBusanKorea

Personalised recommendations