Approximating Tree Edit Distance Through String Edit Distance

  • Tatsuya Akutsu
  • Daiji Fukagawa
  • Atsuhiro Takasu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4288)


This paper presents an O(n 2) time algorithm for approximating the unit cost edit distance for ordered and rooted trees of bounded degree within a factor of O(n 3/4), where n is the maximum size of two input trees, and the algorithm is based on transformation of an ordered and rooted tree into a string.


Input Tree Central Edge Special Child Euler Tour Special Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akutsu, T.: A relation between edit distance for ordered trees and edit distance for Euler strings. Information Processing Letters 100, 105–109 (2006)CrossRefMathSciNetMATHGoogle Scholar
  2. 2.
    Batu, T., Ergun, F., Sahinalp, C.: Oblivious string embeddings and edit distance approximations. In: Proc. 17th ACM-SIAM Symp. Discrete Algorithms, pp. 792–801 (2006)Google Scholar
  3. 3.
    Bille, P.: A survey on tree edit distance and related problem. Theoretical Computer Science 337, 217–239 (2005)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chen, W.: New algorithm for ordered tree-to-tree correction problem. Journal of Algorithms 40, 135–158 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. In: Proc. 13th ACM-SIAM Symp. Discrete Algorithms, pp. 667–676 (2002)Google Scholar
  6. 6.
    Demaine, E., Mozes, S., Rossman, B., Weimann, O.: An O(n3)-time algorithm for tree edit distance. Preprint cs.DS/0604037 (2006)Google Scholar
  7. 7.
    Fukagawa, D., Akutsu, T.: Fast algorithms for comparison of similar unordered trees. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 452–463. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Garofalakis, M., Kumar, A.: XML stream processing using tree-edit distance embedding. ACM Trans. Database Systems 30, 279–332 (2005)CrossRefGoogle Scholar
  9. 9.
    Guha, S., Jagadish, H.V., Koudas, N., Srivastava, D., Yu, T.: Approximate XML joins. In: Proc. ACM SIGMOD, pp. 287–298 (2002)Google Scholar
  10. 10.
    Khot, S., Naor, A.: Nonembeddability theorems via Fourier analysis. In: Proc. 46th IEEE Symp. Foundations on Computer Science, pp. 101–110 (2005)Google Scholar
  11. 11.
    Klein, P.N.: Computing the edit-distance between unrooted ordered trees. In: Proc. 6th European Symp. Algorithms, pp. 91–102 (1998)Google Scholar
  12. 12.
    Krauthgamer, R., Rabani, R.: Improved lower bounds for embeddings into L 1. In: Proc. 17th ACM-SIAM Symp. Discrete Algorithms, pp. 1010–1017 (2006)Google Scholar
  13. 13.
    Ostrovsky, R., Rabani, Y.: Low distortion embeddings for edit distance. In: Proc. 37th ACM Symp. Theory of Computing, pp. 218–224 (2005)Google Scholar
  14. 14.
    Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26, 422–433 (1979)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Valiente, G.: Algorithms on Trees and Graphs. Springer, Heidelberg (2002)MATHGoogle Scholar
  16. 16.
    Yang, R., Kalnis, P., Tang, A.K.H.: Similarity evaluation on tree-structured data. In: Proc. ACM SIGMOD, pp. 754–765 (2005)Google Scholar
  17. 17.
    Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related problems. SIAM J. Computing 18, 1245–1262 (1989)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tatsuya Akutsu
    • 1
  • Daiji Fukagawa
    • 2
  • Atsuhiro Takasu
    • 2
  1. 1.Bioinformatics Center, Institute for Chemical ResearchKyoto UniversityKyotoJapan
  2. 2.National Institute of InformaticsTokyoJapan

Personalised recommendations