An Identity-Based Proxy Signature Scheme from Pairings

  • Kyung-Ah Shim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4307)


A proxy signature enables an original signer to delegate her signing capability to a proxy signer and then the proxy signer can sign a message on behalf of the original signer. In this paper we propose an ID-based proxy signature scheme from bilinear pairings. We provide exact security proof of the proposed ID-based proxy signature scheme in the random oracle model under the Computational Diffie-Hellman assumption without using Forking Lemma.


Signature Scheme Proxy Signature Admissible Pairing Bilinear Pairing Random Oracle Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boldyreva, A.: Efficient threshold signature, multisignature and blind signature schemes based on the Gap-Diffie-Hellman-group signature scheme, PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2003)Google Scholar
  2. 2.
    Boldyreva, A., Palacio, A., Warinschi, B.: Secure Proxy Signature Scheme for Delegation of Signing Rights, IACR ePrint Archive (2003), available at:
  3. 3.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Lee, B., Kim, H., Kim, K.: Secure mobile agent using strong non-designated proxy signature. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 474–486. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Mambo, M., Usuda, K., Okamoto, E.: Proxy signature: Delegation of the power to sign messages. IEICE Trans. Fundamentals E79-A(9), 1338–1353 (1996)Google Scholar
  9. 9.
    Okamoto, T., Tada, M., Okamoto, E.: Extended proxy signatures for smart cards. In: Zheng, Y., Mambo, M. (eds.) ISW 1999. LNCS, vol. 1729, pp. 247–258. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Pointcheval, D., Stern, J.: Security proofs for signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 387–398. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  12. 12.
    Xu, J., Zhang, Z., Feng, D.: ISPA-WS 2005. LNCS, vol. 3559, pp. 359–367. Springer, Heidelberg (2005)Google Scholar
  13. 13.
    Zhang, F., Kim, K.: Efficient ID-based blind signature and proxy signature from pairings. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 312–323. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Zhang, F., Naini, R.S., Lin, C.Y.: New proxy signature, proxy blind signature and proxy ring signature schemes from bilinear pairings, Cryptology ePrint Archive, Report 2003/117 (2003)Google Scholar
  15. 15.
    Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its application. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kyung-Ah Shim
    • 1
  1. 1.Department of MathematicsEwha Womans UniversitySeoulKorea

Personalised recommendations