New Approach for Selectively Convertible Undeniable Signature Schemes

  • Kaoru Kurosawa
  • Tsuyoshi Takagi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4284)

Abstract

In this paper, we propose a new approach for constructing selectively convertible undeniable signature schemes, and present two efficient schemes based on RSA. Our approach allows a more direct selective conversion than the previous schemes, and the security can be proved formally. Further, our disavowal protocols do not require parallelization techniques to reach a significant soundness probability. Also, our second scheme is the first selectively convertible scheme which is provably secure without random oracles.

Keywords

undeniable signature selective conversion RSA 

References

  1. 1.
    Boyar, J., Chaum, D., Damgård, I.B., Pedersen, T.P.: Convertible undeniable signatures. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 189–205. Springer, Heidelberg (1991)Google Scholar
  2. 2.
    Boyd, C., Foo, E.: Off-line fair payment protocols using convertible signatures. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 271–285. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Biehl, I., Paulus, S., Takagi, T.: Efficient undeniable signature schemes based on ideal arithmetic in quadratic orders. Designs, Codes and Cryptography 31(2), 99–123 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Camenisch, J.L., Michels, M.: Confirmer signature schemes secure against adaptive adversaries (Extended abstract). In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 243–258. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Camenisch, J.L., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Catalano, D., Nguyên, P.Q., Stern, J.: The Hardness of Hensel Lifting: The Case of RSA and Discrete Logarithm. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 299–310. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Chaum, D.: Zero-knowledge undeniable signatures. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 458–464. Springer, Heidelberg (1991)Google Scholar
  8. 8.
    Chaum, D.: Designated confirmer signatures. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 86–91. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  9. 9.
    Chaum, D., van Heijst, E., Pfitzmann, B.: Cryptographically strong undeniable signatures, unconditionally secure for the signer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 470–484. Springer, Heidelberg (1992)Google Scholar
  10. 10.
    Chaum, D., van Antwerpen, H.: Undeniable signatures. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 212–216. Springer, Heidelberg (1990)Google Scholar
  11. 11.
    Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)Google Scholar
  12. 12.
    Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. ACM Transactions on Information and System Security 3(3), 161–185 (2000)CrossRefGoogle Scholar
  14. 14.
    Damgård, I.B., Pedersen, T.P.: New convertible undeniable signature schemes. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 372–386. Springer, Heidelberg (1996)Google Scholar
  15. 15.
    Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)Google Scholar
  16. 16.
    Galbraith, S., Mao, W.: Invisibility and anonymity of undeniable and confirmer signatures. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 80–97. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Galbraith, S., Mao, W., Paterson, K.G.: RSA-based undeniable signatures for general moduli. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 200–217. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Gennaro, R., Rabin, T., Krawczyk, H.: RSA-based undeniable signatures. Journal of Cryptology 13(4), 397–416 (2000)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)Google Scholar
  20. 20.
    Kurosawa, K., Heng, S.: The Power of identification schemes. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 364–377. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Kurosawa, K., Heng, S.-H.: Relations among security notions for undeniable signature schemes. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 34–48. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Libert, B., Quisquater, J.-J.: Identity based undeniable signatures. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 112–125. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Laguillaumie, F., Vergnaud, D.: Short undeniable signatures without random oracles: The Missing Link. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 283–296. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Michels, M., Petersen, H., Hoster, P.: Breaking and repairing a convertible undeniable signature scheme. In: 3rd ACM CCCS, pp. 148–152 (1996)Google Scholar
  25. 25.
    Michels, M., Stadler, M.: Efficient convertible undeniable signature schemes. In: SAC 1997, pp. 231–244. Springer, Heidelberg (1997)Google Scholar
  26. 26.
    Monnerat, J., Vaudenay, S.: Undeniable signatures based on characters: How to sign with one bit. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 69–85. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Monnerat, J., Vaudenay, S.: Generic homomorphic undeniable signatures. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 354–371. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  28. 28.
    Ogata, W., Kurosawa, K., Heng, S.: The security of the FDH variant of Chaum’s undeniable signature scheme. IEEE Transactions on Information Theory 52(5), 2006–2017 (2006)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  30. 30.
    Pass, R.: On deniability in the common reference string and random oracle model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  31. 31.
    Pointcheval, D.: Self-scrambling anonymizers. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 259–275. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  32. 32.
    Shamir, A., Tauman, Y.: Improved online/offline signature schemes. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 355–367. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kaoru Kurosawa
    • 1
  • Tsuyoshi Takagi
    • 2
  1. 1.Ibaraki UniversityJapan
  2. 2.Future University-HakodateJapan

Personalised recommendations