Advertisement

New Cryptanalytic Results on IDEA

  • Eli Biham
  • Orr Dunkelman
  • Nathan Keller
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4284)

Abstract

IDEA is a 64-bit block cipher with 128-bit keys introduced by Lai and Massey in 1991. IDEA is one of the most widely used block ciphers, due to its inclusion in several cryptographic packages, such as PGP and SSH. The cryptographic strength of IDEA relies on a combination of three incompatible group operations – XOR, addition and modular multiplication. Since its introduction in 1991, IDEA has withstood extensive cryptanalytic effort, but no attack was found on the full variant of the cipher.

In this paper we present the first known non-trivial relation that involves all the three operations of IDEA. Using this relation and other techniques, we devise a linear attack on 5-round IDEA that uses 219 known plaintexts and has a time complexity of 2103 encryptions. By transforming the relation into a related-key one, a similar attack on 7.5-round IDEA can be applied with data complexity of 243.5 known plaintexts and a time complexity equivalent to 2115.1 encryptions. Both of the attacks are by far the best known attacks on IDEA

Keywords

Time Complexity Hash Table Block Cipher Fast Software Encryption Partial Decryption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Biham, E., Biryukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA and Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack - Rectangling the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Biham, E., Dunkelman, O., Keller, N.: New Results on Boomerang and Rectangle Attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Biham, E., Dunkelman, O., Keller, N.: New Combined Attacks on Block Ciphers. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 126–144. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle Attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Biryukov, A., Nakahara Jr., J., Preneel, B., Vandewalle, J.: New Weak-Key Classes of IDEA. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 315–326. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Borisov, N., Chew, M., Johnson, R., Wagner, D.: Multiplicative Differentials. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 17–33. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Borst, J., Knudsen, L.R., Rijmen, V.: Two Attacks on Reduced IDEA. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 1–13. Springer, Heidelberg (1997)Google Scholar
  9. 9.
    Daemen, J., Govaerts, R., Vandewalle, J.: Cryptanalysis of 2.5 Rounds of IDEA (Extended Abstract), technical report 93/1, Department of Electrical Engineering, ESAT–COSIC, Belgium (1993)Google Scholar
  10. 10.
    Daemen, J., Govaerts, R., Vandewalle, J.: Weak Keys for IDEA. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 224–231. Springer, Heidelberg (1994)Google Scholar
  11. 11.
    Demirci, H.: Square-like Attacks on Reduced Rounds of IDEA. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 147–159. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Demirci, H., Selçuk, A.A., Türe, E.: A New Meet-in-the-Middle Attack on the IDEA Block Cipher. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 117–129. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Hawkes, P.: Differential-Linear Weak Key Classes of IDEA. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 112–126. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Hawkes, P., O’Connor, L.: On Applying Linear Cryptanalysis to IDEA. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 105–115. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  15. 15.
    Hong, S., Kim, J., Kim, G., Lee, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced Versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Junod, P.: New Attacks Against Reduced-Round Versions of IDEA. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 384–397. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptoanalysis of IDEA, G-DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 237–251. Springer, Heidelberg (1996)Google Scholar
  18. 18.
    Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Kim, J.-S., Kim, G., Hong, S.H., Lee, S.-J., Hong, D.: The Related-Key Rectangle Attack – Application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Lai, X., Massey, J.L.: Markov Ciphers and Differential Cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)Google Scholar
  21. 21.
    Meier, W.: On the Security of the IDEA Block Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 371–385. Springer, Heidelberg (1994)Google Scholar
  22. 22.
    Nakahara Jr. J., Barreto, P.S.L.M., Preneel, B., Vandewalle, J., Kim, H.Y.: SQUARE Attacks Against Reduced-Round PES and IDEA Block Ciphers. IACR Cryptology ePrint Archive, Report 2001/068 (2001)Google Scholar
  23. 23.
    Nakahara Jr., J., Rijmen, V., Preneel, B., Vandewalle, J.: The MESH Block Ciphers. In: Chae, K.-J., Yung, M. (eds.) WISA 2003. LNCS, vol. 2908, pp. 458–473. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Nakahara Jr., J., Preneel, B., Vandewalle, J.: The Biryukov-Demirci Attack on Reduced-Round Versions of IDEA and MESH Ciphers. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 98–109. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    NESSIE, Performance of Optimized Implementations of the NESSIE Primitives, NES/DOC/TEC/WP6/D21/a, available on-line at: http://www.nessie.eu.org/nessie
  26. 26.
    Raddum, H.: Cryptanalysis of IDEA-X/2. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 1–8. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  27. 27.
    Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Eli Biham
    • 1
  • Orr Dunkelman
    • 1
  • Nathan Keller
    • 2
  1. 1.Computer Science DepartmentTechnionHaifaIsrael
  2. 2.Einstein Institute of MathematicsHebrew UniversityJerusalemIsrael

Personalised recommendations