Advertisement

KFC – The Krazy Feistel Cipher

  • Thomas Baignères
  • Matthieu Finiasz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4284)

Abstract

We introduce KFC, a block cipher based on a three round Feistel scheme. Each of the three round functions has an SPN-like structure for which we can either compute or bound the advantage of the best d-limited adaptive distinguisher, for any value of d. Using results from the decorrelation theory, we extend these results to the whole KFC construction. To the best of our knowledge, KFC is the first practical (in the sense that it can be implemented) block cipher to propose tight security proofs of resistance against large classes of attacks, including most classical cryptanalysis (such as linear and differential cryptanalysis, taking hull effect in consideration in both cases, higher order differential cryptanalysis, the boomerang attack, differential-linear cryptanalysis, and others).

Keywords

Random Function Random Permutation Block Cipher Round Function Linear Cryptanalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Baignères, T., Finiasz, M.: Dial C for Cipher. In: Biham, Youssef [9] (to appear)Google Scholar
  2. 2.
    Baignères, T., Vaudenay, S.: Proving the security of AES substitution-permutation network. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 65–81. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Berbain, C., Billet, O., Gilbert, H.: Efficient implementations of multivariate quadratic systems. In: Biham, Youssef [9] (to appear)Google Scholar
  4. 4.
    Berbain, C., Gilbert, H., Patarin, J.: QUAD: A practical stream cipher with provable security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 109–128. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials. In: Stern [22], pp. 12–23Google Scholar
  6. 6.
    Biham, E., Dunkelman, O., Keller, N.: The rectangle attack - rectangling the serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology 4, 3–72 (1991)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21. Springer, Heidelberg (1991)Google Scholar
  9. 9.
    Biham, E., Youssef, A.M. (eds.): SAC 2006. LNCS, vol. 4356. Springer, Heidelberg (2007)MATHGoogle Scholar
  10. 10.
    Blum, L., Blum, M., Shub, M.: Comparison of two pseudo-random number generators. In: Chaum, D., Rivest, R.L., Sherman, A. (eds.) Advances in Cryptology - Crypto 1982, pp. 61–78. Plenum, New York (1982)Google Scholar
  11. 11.
    Daemen, J., Rijmen, V.: The Design of Rijndael. In: Information Security and Cryptography. Springer, Heidelberg (2002)Google Scholar
  12. 12.
    El-Khamy, M., McEliece, R.: The partition weight enumerator of MDS codes and its applications. In: IEEE International Symposium on Information Theory, ISIT 2005. IEEE, Los Alamitos (2005), Available on: http://arxiv.org/pdf/cs.IT/0505054 Google Scholar
  13. 13.
    Feistel, H.: Cryptography and computer privacy. Scientific American 228, 15–23 (1973)CrossRefGoogle Scholar
  14. 14.
    Granboulan, L., Nguyên, P.Q., Noilhan, F., Vaudenay, S.: DFCv2. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 57–71. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Knudsen, L.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)Google Scholar
  16. 16.
    Lai, X.: Higher order derivatives and differential cryptanalysis. In: Symposium on Communication, Coding and Cryptography, pp. 227–233. Kluwer Academic Publishers, Dordrecht (1994)Google Scholar
  17. 17.
    Lai, X., Massey, J.L.: Markov ciphers and differential cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)Google Scholar
  18. 18.
    Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM Journal on Computing 17(2), 373–386 (1988)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Matsui, M.: The first experimental cryptanalysis of the data encryption standard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer, Heidelberg (1994)Google Scholar
  20. 20.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)Google Scholar
  21. 21.
    Nyberg, K.: Linear approximation of block ciphers. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  22. 22.
    Stern, J. (ed.): EUROCRYPT 1999. LNCS, vol. 1592. Springer, Heidelberg (1999)MATHGoogle Scholar
  23. 23.
    Tardy-Corfdir, A., Gilbert, H.: A known plaintext attack of FEAL-4 and FEAL-6. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 172–182. Springer, Heidelberg (1992)Google Scholar
  24. 24.
    Vaudenay, S.: Provable security for block ciphers by decorrelation. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 249–275. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  25. 25.
    Vaudenay, S.: Resistance against general iterated attacks. In: Stern [22], pp. 255–271Google Scholar
  26. 26.
    Vaudenay, S.: Decorrelation: a theory for block cipher security. Journal of Cryptology 16(4), 249–286 (2003)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Wagner, D.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thomas Baignères
    • 1
  • Matthieu Finiasz
    • 1
  1. 1.EPFLLausanneSwitzerland

Personalised recommendations