Advertisement

Almost Optimum Secret Sharing Schemes Secure Against Cheating for Arbitrary Secret Distribution

  • Satoshi Obana
  • Toshinori Araki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4284)

Abstract

We consider the problem of cheating in secret sharing schemes, cheating in which individuals submit forged shares in the secret reconstruction phase in an effort to make another participant reconstruct an invalid secret. We introduce a novel technique which uses universal hash functions to detect such cheating and propose two efficient secret sharing schemes that employ the functions. The first scheme is nearly optimum with respect to the size of shares; that is, the size of shares is only one bit longer than its existing lower bound. The second scheme possesses a particular merit in that the parameter for the probability of successful cheating can be chosen without regard to the size of the secret. Further, the proposed schemes are proven to be secure regardless of the probability distribution of the secret.

Keywords

Hash Function Access Structure Secret Sharing Scheme Hash Family Secure Multiparty Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. AFIPS 1979, National Computer Conference, vol. 48, pp. 313–137 (1979), vol. 4(4), pp. 502–510 (1991) Google Scholar
  2. 2.
    Carpentieri, M.: A Perfect Threshold Secret Sharing Scheme to Identify Cheaters. Designs, Codes and Cryptography 5(3), 183–187 (1995)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Carpentieri, M., De Santis, A., Vaccaro, U.: Size of Shares and Probability of Cheating in Threshold Schemes. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 118–125. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Cramer, R., Damgård, I., Maurer, U.M.: General Secure Multi-party Computation from any Linear Secret-Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    den Boer, B.: A Simple and Key-Economical Unconditional Authentication Scheme. Journal of Computer Security 2, 65–71 (1993)Google Scholar
  6. 6.
    Kurosawa, K., Obana, S., Ogata, W.: t-Cheater Identifiable (k, n) Threshold Secret Sharing Schemes. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 410–423. Springer, Heidelberg (1995)Google Scholar
  7. 7.
    MacWilliams, F., Sloane, N.: The Theory of Error Correcting Codes. North Holland, Amsterdam (1977)MATHGoogle Scholar
  8. 8.
    Ogata, W., Kurosawa, K., Stinson, D.R.: Optimum Secret Sharing Scheme Secure against Cheating. SIAM Journal on Discrete Mathematics 20(1), 79–95 (2006)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  10. 10.
    Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613 (1979)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Stinson, D.R.: On the Connections between Universal Hashing, Combinatorial Designs and Error-Correcting Codes. Congressus Numerantium 114, 7–27 (1996)MATHMathSciNetGoogle Scholar
  12. 12.
    Tompa, M., Woll, H.: How to Share a Secret with Cheaters. Journal of Cryptology 1(3), 133–138 (1989)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Satoshi Obana
    • 1
  • Toshinori Araki
    • 1
  1. 1.NEC Corporation 

Personalised recommendations