On the Equivalence of RSA and Factoring Regarding Generic Ring Algorithms

  • Gregor Leander
  • Andy Rupp
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4284)

Abstract

To prove or disprove the computational equivalence of solving the RSA problem and factoring integers is a longstanding open problem in cryptography. This paper provides some evidence towards the validity of this equivalence. We show that any efficient generic ring algorithm which solves the (flexible) low-exponent RSA problem can be converted into an efficient factoring algorithm. Thus, the low-exponent RSA problem is intractable w.r.t. generic ring algorithms provided that factoring is hard.

Keywords

Computational Equivalence RSA Problem Factorization Problem Generic Algorithms 

References

  1. 1.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Boneh, D., Venkatesan, R.: Breaking RSA may not be equivalent to factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 59–71. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Brown, D.R.L.: Breaking RSA may be as difficult as factoring. Cryptology ePrint Archive, Report 2005/380 (2006), http://eprint.iacr.org/
  4. 4.
    Damgård, I., Koprowski, M.: Generic lower bounds for root extraction and signature schemes in general groups. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 256–271. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes 55(2), 165–172 (1994)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gregor Leander
    • 1
  • Andy Rupp
    • 1
  1. 1.Horst-Görtz Institute for IT-SecurityRuhr-University BochumGermany

Personalised recommendations