Integrating Data from Maps on the World-Wide Web

  • Eliyahu Safra
  • Yaron Kanza
  • Yehoshua Sagiv
  • Yerach Doytsher
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4295)


A substantial amount of data about geographical entities is available on the World-Wide Web, in the form of digital maps. This paper investigates the integration of such data. A three-step integration process is presented. First, geographical objects are retrieved from Maps on the Web. Secondly, pairs of objects that represent the same real-world entity, in different maps, are discovered and the information about them is combined. Finally, selected objects are presented to the user. The proposed process is efficient, accurate (i.e., the discovery of corresponding objects has high recall and precision) and it can be applied to any pair of digital maps, without requiring the existence of specific attributes. For the step of discovering corresponding objects, three new algorithms are presented. These algorithms modify existing methods that use only the locations of geographical objects, so that information additional to locations will be utilized in the process. The three algorithms are compared using experiments on datasets with varying levels of completeness and accuracy. It is shown that when used correctly, additional information can improve the accuracy of location-based methods even when the data is not complete or not entirely accurate.


Matching Algorithm Geographic Information System Raster Image Geographic Markup Language Geographical Entity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Geographic Markup Language (GML),
  2. 2.
    Beeri, C., Doytsher, Y., Kanza, Y., Safra, E., Sagiv, Y.: Finding corresponding objects when integrating several geo-spatial datasets. In: ACM-GIS, pp. 87–96 (2005)Google Scholar
  3. 3.
    Beeri, C., Kanza, Y., Safra, E., Sagiv, Y.: Object fusion in geographic information systems. In: VLDB, pp. 816–827 (2004)Google Scholar
  4. 4.
    Boucelma, O., Essid, M., Lacroix, Z.: A WFS-based mediation system for GIS interoperability. In: ACM-GIS, pp. 23–28 (2002)Google Scholar
  5. 5.
    Bruns, T., Egenhofer, M.: Similarity of spatial scenes. In: SDH, Delft (Netherlands), pp. 31–42 (1996)Google Scholar
  6. 6.
    Cobb, M.A., Chung, M.J., Foley, H., Petry, F.E., Show, K.B.: A rule-based approach for conflation of attribute vector data. GioInformatica 2(1), 7–33 (1998)CrossRefGoogle Scholar
  7. 7.
    Devogele, T., Parent, C., Spaccapietra, S.: On spatial database integration. In: IJGIS, Special Issue on System Integration (1998)Google Scholar
  8. 8.
    Fonseca, F.T., Egenhofer, M.J.: Ontology-driven geographic information systems. In: ACM-GIS, Kansas City (Missouri, US), pp. 14–19 (1999)Google Scholar
  9. 9.
    Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Srivastava, D.: Approximate string joins in a database (almost) for free. In: VLDB, pp. 491–500 (2001)Google Scholar
  10. 10.
    Gravano, L., Ipeirotis, P.G., Koudas, N., Srivastava, D.: Text joins in an RDBMS for web data integration. In: Proceedings of the 12th international conference on World Wide Web, pp. 90–101 (2003)Google Scholar
  11. 11.
    McGlone, J.C.: Manual of Photogrammetry, 5th edn. American Society of Photogrammetry and Remote Sensing (2004)Google Scholar
  12. 12.
    Papakonstantinou, Y., Abiteboul, S., Garcia-Molina, H.: Object fusion in mediator systems. In: VLDB, pp. 413–424 (1996)Google Scholar
  13. 13.
    Saalfeld, A.: Conflation-automated map compilation. IJGIS 2(3), 217–228 (1988)CrossRefGoogle Scholar
  14. 14.
    Samal, A., Seth, S., Cueto, K.: A feature based approach to conflation of geospatial sources. IJGIS 18(00), 1–31 (2004)Google Scholar
  15. 15.
    Sester, M., Anders, K.H., Walter, V.: Linking objects of different spatial data sets by integration and aggregation. GeoInformatica 2(4), 335–358 (1998)CrossRefGoogle Scholar
  16. 16.
    Uitermark, H., van Oosterom, P., Mars, N., Molenaar, M.: Ontology-based geographic data set integration. In: Böhlen, M.H., Jensen, C.S., Scholl, M.O. (eds.) STDBM 1999. LNCS, vol. 1678, pp. 60–79. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Walter, V., Fritsch, D.: Matching spatial data sets: a statistical approach. IJGIS 13(5), 445–473 (1999)CrossRefGoogle Scholar
  18. 18.
    Ware, J.M., Jones, C.B.: Matching and aligning features in overlayed coverages. In: ACM-GIS, pp. 28–33 (1998)Google Scholar
  19. 19.
    Wiederhold, G.: Mediators in the architecture of future information systems. Computer 25(3), 38–49 (1992)CrossRefGoogle Scholar
  20. 20.
    Wiederhold, G.: Mediation to deal with heterogeneous data sources. In: Introperating Geographic Information Systems, pp. 1–16 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Eliyahu Safra
    • 1
  • Yaron Kanza
    • 2
  • Yehoshua Sagiv
    • 3
  • Yerach Doytsher
    • 1
  1. 1.Department of Transportation and Geo-InformationTechnionHaifaIsrael
  2. 2.Department of Computer ScienceUniversity of TorontoTorontoCanada
  3. 3.School of Engineering and Computer ScienceThe Hebrew UniversityJerusalemIsrael

Personalised recommendations