Authenticated Group Key Agreement for Multicast

  • Liming Wang
  • Chuan-Kun Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4301)


Secure multicast communication provides an efficient way to deliver data to a large group of recipients. Scalability, efficiency and authenticity are the key challenges for secure multicast. In this paper, we propose a novel group key agreement scheme called logical identity hierarchy(LIH) for multicast to support secure communications for large and dynamic groups, which is based on bilinear pairing. Compared with the previous tree-based schemes, LIH provides dual authentication between group controller(GC) and group members and hierarchical authentication among group members. GC and all the users do not need to execute any encryption/decryption process during the rekeying operation. Moreover, in LIH, the group members can be stateless receivers, who do not need to update their state during the protocol execution. Using a public board, GC does not need to multicast any rekeying message when a user joins/leaves the communication group. Security analysis shows that LIH satisfies both backward secrecy and forward secrecy.


Random Oracle Forward Secrecy Group Controller Elliptic Curve Discrete Logarithm Problem Passive Adversary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deering, S.E.: Multicast Routing in Internetworks and Extended LANs. In: Proceedings of the ACM SIGCOMM 1988, Stanford, California, pp. 55–64 (1988)Google Scholar
  2. 2.
    Deering, S.E.: Host Extensions for IP Multicasting. RFC 1112 (August 1989)Google Scholar
  3. 3.
    Deering, S.E., Estrin, D., Farinacci, D., Jacosen, V.: An Architecture for Wide-Area Multicasting. In: Proceedings of the ACM SIGCOMM 1994, London, pp. 126–135 (1994)Google Scholar
  4. 4.
    Lu, H.: A Novel High-Order Tree for Secure Multicast Key Management. IEEE Trans. Computers 54(2), 214–224 (2005)CrossRefGoogle Scholar
  5. 5.
    Canetti, R., Garay, J., Itkis, G.: Multicast Security: A Taxonomy and Some Efficient constructions. In: Proc. of INFOCOM 1999, pp. 708–716 (1999)Google Scholar
  6. 6.
    Chang, I., Engel, R., Pendarakis, D., Saha, D.: Key management for Secure Internet Multicast Using Boolean Function Minimization Techniques. In: Proceedings of INFOCOM 1999, pp. 689–698 (1999)Google Scholar
  7. 7.
    Canetti, R., Malkin, T., Nissim, K.: Efficient Communication Storage Tradeoffs for Multicast Encryption. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 459–474. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Hardjono, T., Tsudik, G.: Ip Multicast Security: Issues and Directions. Annales de Telecom, pp. 324–340 (2000)Google Scholar
  9. 9.
    Micciancio, D., Panjwani, S.: Optimal Communication Complexity of Generic Multicast Key Distribution. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 153–170. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Steiner, M., Tsudik, G., Waidner, M.: Cliques: A new approach to group key agreement. IEEE Transactions on Distributed and Computing Systems, 380–387 (1998)Google Scholar
  11. 11.
    Wallner, D., Harder, E., Agee, R.: Key management for multicast: Issues and architectures. RFC 2627, Internet Engineering Task Force (June 1999)Google Scholar
  12. 12.
    Wong, C.K., Lam, S.: Secure Group Communications Using Key Graphs. In: Proceedings of SIGCOMM 1998, pp. 68–79 (1998)Google Scholar
  13. 13.
    Sherman, A.T., McGrew, D.A.: Key Establishment in Large Dynamic Groups Using One-Way Function Trees. IEEE Trans. Software Engineering 29(5), 444–458 (2003)CrossRefGoogle Scholar
  14. 14.
    Kim, Y., Perrig, A., Tsudik, G.: Simple and Fault-Tolerant Key Agreement for Dynamic Collaborative Groups. In: 7th ACM Conference on Computer and Communications Security, pp. 235–244 (2000)Google Scholar
  15. 15.
    Dutta, R., Barua, R., Sarkar, P.: Provably Scure Authenticated Tree Based Key Agreement. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 92–104. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Kim, Y., Perrig, A., Tsudik, G.: Tree-Based Group Key Agreement. ACM Transactions on Information and System Security 7(1), 60–96 (2004)CrossRefGoogle Scholar
  17. 17.
    Perrig, A., Song, D., Tygar, J.D.: ELK, a New Protocol for Efficient Large Group Key Distribution. In: IEEE Symposium on Security and Privacy 2001, pp. 247–262 (2001)Google Scholar
  18. 18.
    Waldvogel, M., Caronni, G., Sun, D., Weiler, N., Plattner, B.: The VersaKey Framework: Versatile Group Key Management. IEEE Journal on Selected Areas in Communications 17(8), 1614–1631 (1999)CrossRefGoogle Scholar
  19. 19.
    McGrew, D.A., Sherman, A.T.: Key Establishment in large Dynamic Groups Using One-Way Function Trees. Technical Report No.0755, TIS Labs at Network Associates, Inc., Glenwood, MD (May 1998)Google Scholar
  20. 20.
    Canetti, R., Halevi, S., Katz, J.: A Forward-Secure Public-Key Encryption Scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Boneh, D., Katz, J.: Improved Efficiency for CCA-Secure Cryptosystems Built Using Identity-Based Encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 87–103. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  25. 25.
    Hess, F.: Efficient Identity Based Signature Schemes Based on Pairings. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Libert, B., Quisquater, J.J.: New Identity Based Signcryption Schemes from Pairing. Cryptology ePrint Archive, Report 2003/023, available at:
  27. 27.
    Lynn, B.: Authenticated Identity-Based Encryption, Cryptology ePrint Archive, Report 2002/072, available at:
  28. 28.
    Gentry, C., Silverberg, A.: Hierarchical ID-Based Cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  29. 29.
    Boyen, X.: Multipurpose Identity-Based Signcryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 383–399. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  30. 30.
    Barreto, P.S.L.M., Kim, H.Y., Scott, M.: Efficient Algorithms for Pairing-Based Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  31. 31.
    Barreto, P.S.L.M., Lynn, B., Scott, M.: On the Selection of Pairing-Friendly Groups. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 17–25. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  32. 32.
    Steven, D.G., Harrison, K., Soldera, D.: Implementing the Tate Pairing. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 324–337. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  33. 33.
    Blake, I., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography. Cambridge Unversity Press, Cambridge (2001)Google Scholar
  34. 34.
    Choie, Y.J., Lee, E.: Implementation of Tate Pairing on Hyperelliptic Curves of Genus 2 ICISC 2003. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 97–111. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  35. 35.
    Miller, V.S.: The Weil Pairing and Its Efficient Calculation. Journal of Cryptology 17(4), 235–261 (2004)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Scott, M., Barreto, P.S.L.M.: Compressed Pairings. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 140–156. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Liming Wang
    • 1
    • 2
  • Chuan-Kun Wu
    • 1
  1. 1.State Key Laboratory of Information Security, Institute of SoftwareChinese Academy of SciencesBeijingP.R. China
  2. 2.Graduate School of Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations