Skip to main content

A Fast Algorithm for Determining the Linear Complexity of Periodic Sequences over GF(3)

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNSC,volume 4301)

Abstract

A fast algorithm is derived for determining the linear complexity and the minimal polynomial of periodic sequences over GF(3) with period 3n p m, where p is a prime number, and 3 is a primitive root modulo p 2 . The algorithm presented here generalizes the fast algorithm to determine the linear complexity of a sequence over GF(q) with period p m, where p is a prime, q is a prime and a primitive root modulo p 2.

Keywords

  • Cryptography
  • periodic sequence
  • linear complexity
  • minimal polynomial

The research is supported by Natural Science Foundation of Anhui Education Bureau (No. 2006KJ238B).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Games, R.A., Chan, A.H.: A fast algorithm for determining the complexity of a binary sequence with period 2n. IEEE Trans on Information Theory 29(1), 144–146 (1983)

    CrossRef  MATH  MathSciNet  Google Scholar 

  2. Ding, C.S., Xiao, G.Z., Shan, W.J.: The Stability Theory of Stream Ciphers, pp. 85–88. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  3. Blackburn, S.R.: A generalization of the discrete Fourier transform: determining the minimal polynomial of a periodic sequence. IEEE Trans on Information Theory 40(5), 1702–1704 (1994)

    CrossRef  MATH  MathSciNet  Google Scholar 

  4. Wei, S.M., Xiao, G.Z., Chen, Z.: Fast algorithms for determining the linear complexity of periodic sequences. Journal of China Institute of Communications 22(12), 48–54 (2001) (in Chinese)

    Google Scholar 

  5. Wei, S.M., Xiao, G.Z., Chen, Z.: A fast algorithm for determining the complexity of a binary sequence with period 2n p m. Science in China (Series F) 32(3), 401–408 (2002)

    Google Scholar 

  6. Wei, S.M., Xiao, G.Z., Chen, Z.: A fast algorithm for determining the minimal polynomial of a sequence with period 2p n over GF(q). IEEE Trans. on Information Theory 48(10), 2754–2758 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Massey, J.L.: Shift register synthesis and BCH decoding. IEEE Trans. on Information Theory 15(1), 122–127 (1969)

    CrossRef  MATH  MathSciNet  Google Scholar 

  8. McEliece, R.J.: Finite Fields for Computer Scientists and Engineers. Kluwer Academic Publishers, Boston (1987)

    MATH  Google Scholar 

  9. Rosen, K.H.: Elementary Number Theory and its Applications. Addison-Wesley, Reading (1988)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhou, J., Zheng, Q. (2006). A Fast Algorithm for Determining the Linear Complexity of Periodic Sequences over GF(3). In: Pointcheval, D., Mu, Y., Chen, K. (eds) Cryptology and Network Security. CANS 2006. Lecture Notes in Computer Science, vol 4301. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11935070_15

Download citation

  • DOI: https://doi.org/10.1007/11935070_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49462-1

  • Online ISBN: 978-3-540-49463-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics