Emotional Descriptors for Map-Based Access to Music Libraries

  • Doris Baum
  • Andreas Rauber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4312)


Apart from genre- and artist-based organization, emotions are one of the most frequently used characteristics to describe and thus potentially organize music. Emotional descriptors may serve as additional labels to access and interact with music libraries. This paper reports on a user study evaluating a range of emotional descriptors from the PANAS-X schedule for their usefulness to describe pieces of music. It further investigates their potential as labels for SOM-based maps for music collections, analyzing the differences for labels agreed upon by a larger group of people versus strictly personalized labellings of maps due to different interpretations by individual users.


Digital Library Emotional Category Music Piece Musical Genre Emotional Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cunningham, S.J., Downie, J.S., Bainbridge, D.: ”the pain, the pain”: Modelling music information behavior and the songs we hate. In: Proc. 6th Intl. Conf. on Music Information Retrieval (ISMIR 2005), London, UK, September 11-15, 2005, pp. 474–477 (2005)Google Scholar
  2. 2.
    Dittenbach, M., Neumayer, R., Rauber, A.: Playsom: An alternative approach to track selection and playlist generation in large music collections. In: Proc. 1st Intl. Workshop on Audio-Visual Content and Information Visualization in Digital Libraries (AVIVDiLib 2005), Cortona, Italy, May 4-6, 2005, pp. 226–235 (2005)Google Scholar
  3. 3.
    Farnsworth, P.R.: The social psychology of music. Dryden Press (1958)Google Scholar
  4. 4.
    Gabrielsson, A., Juslin, P.N.: Emotional expression in music. In: Davidson, R.J., Scherer, K.R., Goldsmith, H.H. (eds.) Handbook of Affective Sciences, pp. 503–534. Oxford University Press, Oxford (2002)Google Scholar
  5. 5.
    Hevner, K.: Experimental studies of the elements of expression in music. American Journal of Psychology 48, 246–268 (1936)CrossRefGoogle Scholar
  6. 6.
    Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer Series in Information Sciences, vol. 30. Springer, Berlin (2001)MATHGoogle Scholar
  7. 7.
    Lee, K.-K., Park, K.-S.: Robust feature extraction for automatic classification of Korean traditional music in digital library. In: Fox, E.A., Neuhold, E.J., Premsmit, P., Wuwongse, V. (eds.) ICADL 2005. LNCS, vol. 3815, pp. 167–170. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Li, T., Ogihara, M.: Detecting emotion in music. In: Proceedings of the 4th Intl. Conf. on Music Information Retrieval (ISMIR 2003), October 26-30, 2003, Baltimore, Maryland (2003)Google Scholar
  9. 9.
    Pampalk, E., Rauber, A., Merkl, D.: Content-based organization and visualization of music archives. In: Proc. of ACM Multimedia 2002, Juan-les-Pins, France, December 1-6, 2002, pp. 570–579. ACM Press, New York (2002)CrossRefGoogle Scholar
  10. 10.
    Rauber, A., Frühwirth, M.: Automatically analyzing and organizing music archives. In: Constantopoulos, P., Sølvberg, I.T. (eds.) ECDL 2001. LNCS, vol. 2163, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Rauber, A., Pampalk, E., Merkl, D.: The SOM-enhanced JukeBox: Organization and visualization of music collections based on perceptual models. Journal of New Music Research 32(2), 193–210 (2003)CrossRefGoogle Scholar
  12. 12.
    Rauber, A.: Creation and exploration of musical information spaces. In: Proc. Int’l Conf. on Digital Libraries (ICDL 2004), TERI, pp. 741–748 (2004)Google Scholar
  13. 13.
    Russell, J.A.: Core affect and the psychological construction of emotion. Psychological Review 110(1), 145–172 (2003)CrossRefGoogle Scholar
  14. 14.
    Tellegen, A., Watson, D., Clark, L.A.: On the dimensional and hierarchical structure of affect. Psychological Science 10(4), 297–303 (1999)CrossRefGoogle Scholar
  15. 15.
    Thayer, R.E.: The Biopsychology of Mood and Arousal. Oxford University Press, Oxford (1989)Google Scholar
  16. 16.
    Tzanetakis, G., Essl, G., Cook, P.R.: Automatic musical genre classification of audio signals. In: Proc. Intl Symp. on Music Information Retrieval (ISMIR), Bloomington, Indiana, October 15-17, 2001, pp. 205–210 (2001)Google Scholar
  17. 17.
    Watson, D., Clark, L.A.: The PANAS-X Manual for the Positive and Negative Affect Schedule - Expanded Form. The University of Iowa (1994), http://www.psychology.uiowa.edu/faculty/Clark/PANAS-X.pdf
  18. 18.
    Yang, D., Lee, W.: Disambiguating music emotion using software agents. In: Proc. 5th Intl Conf. on Music Information Retrieval (ISMIR 2004), Barcelona, Spain, October 10-14 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Doris Baum
    • 1
  • Andreas Rauber
    • 1
  1. 1.Department of Software Technology and Interactive SystemsVienna University of TechnologyViennaAustria

Personalised recommendations