A Scalable Framework for Multimedia Knowledge Management

  • Yves Raimond
  • Samer A. Abdallah
  • Mark Sandler
  • Mounia Lalmas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4306)


In this paper, we describe a knowledge management framework that addresses the needs of multimedia analysis projects and provides a basis for information retrieval systems. The framework uses Semantic Web technologies to provide a shared knowledge environment, and active Knowledge Machines, wrapping multimedia processing tools, to exploit and/or export knowledge to this environment. This framework is able to handle a wide range of use cases, from an enhanced workspace for researchers to end-user information access. As an illustration of how the proposed framework can be used, we present a case study of music analysis.


Resource Description Framework Domain Ontology Logical Predicate Knowledge Environment SPARQL Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weld, D.S.: Recent advances in ai planning. AI Magazine (1999)Google Scholar
  2. 2.
    Abdallah, S., Raimond, Y., Sandler, M.: An ontology-based approach to information management for music analysis systems. In: Proceedings of 120th AES convention (2006)Google Scholar
  3. 3.
    Codd, E.F.: A relational model of data for large shared data banks. Communications of the ACM 13(6), 377–387 (1970)MATHCrossRefGoogle Scholar
  4. 4.
    Baader, F., Horrocks, I., Sattler, U.: Description logics as ontology languages for the semantic web. In: Hutter, D., Stephan, W. (eds.) Essays in Honor of Jörg Siekmann. LNCS (LNAI). Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Rector, A.L.: Modularisation of domain ontologies implemented in description logics and related formalisms including owl. In: Proceedings of the international conference on Knowledge capture, pp. 121–128. ACM Press, New York (2003)CrossRefGoogle Scholar
  6. 6.
    Guarino, N., Welty, C.: Evaluating ontological decisions with ONTOCLEAN. Communications of the ACM 45(2), 61–65 (2002)CrossRefGoogle Scholar
  7. 7.
    Sagonas, K., Swift, T., Warren, D.S.: XSB as an efficient deductive database engine. In: SIGMOD 1994: Proceedings of the 1994 ACM SIGMOD international conference on Management of data, pp. 442–453. ACM Press, New York (1994)CrossRefGoogle Scholar
  8. 8.
    Shanahan, M.P.: The Event Calculus Explained. In: Veloso, M.M., Wooldridge, M.J. (eds.) Artificial Intelligence Today. LNCS (LNAI), vol. 1600, pp. 409–430. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Abdallah, S., Noland, K., Sandler, M., Casey, M., Rhodes, C.: Theory and evaluation of a bayesian music structure extractor. In: Reiss, J.D., Wiggins, G.A. (eds.) Proceedings of the Sixth International Conference on Music Information Retrieval, pp. 420–425 (2005)Google Scholar
  10. 10.
    Bryson, J., Martin, D., McIlraith, S., Stein, L.: Toward behavioral intelligence in the semantic web. IEEE Computer, Special Issue on Web Intelligence 35(11), 48–55 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yves Raimond
    • 1
  • Samer A. Abdallah
    • 1
  • Mark Sandler
    • 1
  • Mounia Lalmas
    • 2
  1. 1.Centre for Digital Music, Queen MaryUniversity of London 
  2. 2.Department of Computer Science, Queen MaryUniversity of London 

Personalised recommendations