A Bayesian Network Approach to Multi-feature Based Image Retrieval

  • Qianni Zhang
  • Ebroul Izquierdo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4306)


This paper aims at devising a Bayesian Network approach to object centered image retrieval employing non-monotonic inference rules and combining multiple low-level visual primitives as cue for retrieval. The idea is to model a global knowledge network by treating an entire image as a scenario. The overall process is divided into two stages: the initial retrieval stage which is concentrated on finding an optimal multi-feature space stage and doing a simple initial retrieval within this space; and the Bayesian inference stage which uses the initial retrieval information and seeks for a more precise second- retrieval.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chang, S.-E., Sikora, T., Purl, A.: Overview of the MPEG-7 Standard. IEEE Transactions on Circuits and Systems for Video Technology 11(6), 688–695 (2001)CrossRefGoogle Scholar
  2. 2.
    Mojsilovic: A computational model for color naming and describing color composition of images. IEEE Transactions on Image Progressing 14(5), 690–699 (2005)CrossRefGoogle Scholar
  3. 3.
    Fei-Fei, L., Fergus, R., Perona, P.: A Bayesian Approach to Unsupervised One-Shot Learning of Object Categories. In: Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV 2003) (2003)Google Scholar
  4. 4.
    Hoiem, D., Sukthankar, R., Schneiderman, H., Huston, L.: Object-Based Image Retrieval Using the Statistical Structure of Images. In: IEEE Conference on Computer Vision and Pattern Recognition (June 2004)Google Scholar
  5. 5.
    Fergus, R., Perona, P., Zisserman, A.: Object Class Recognition by Unsupervised Scale-Invariant Learning. In: IEEE CVPR 2003 (2003)Google Scholar
  6. 6.
    Helmer, S., Lowe, D.G.: Object Class Recognition with Many Local Features. In: IEEE CVPRW 2004 (2004)Google Scholar
  7. 7.
    Vailaya, A., Figueiredo, M., Jain, A., Zhang, H.J.: A Bayesian Framework for Semantic Classification of Outdoor Vacation Images. In: Proc. SPIE: Storage and Retrieval for Image and Video Databases VII, San Jose, CA, January 1999, vol. 3656, pp. 415–426 (1999)Google Scholar
  8. 8.
    Luo, J., Savakis, A.: Indoor vs Outdoor Classification of Consumer Photographs Using Low-level and Semantic Features. In: IEEE, ICIP 2001, pp. 745–748 (2001)Google Scholar
  9. 9.
    Li, J., Wang, J.Z.: Automatic Linguistic Indexing of Pictures by a Statistical Modeling Approach. IEEE Transactions On Pattern Analysis and Machine Intelligence 25(9) (2003)Google Scholar
  10. 10.
    He, X., King, O., Ma, W.-Y., Li, M., Zhang, H.-J.: Learning a Semantic Space From User’s Relevance Feedback for Image Retrieval. IEEE Transactions On Circuits And Systems For Video Technology 13(1) (January 2003)Google Scholar
  11. 11.
    Adamsy, W.H., Iyengary, G., Linz, C.-Y., Naphadez, M.R., Netiy, C., Nocky, H.J., Smithz, J.R.: Semantic Indexing of Multimedia Content using Visual, Audio and Text cues. In: EURASIP JASP 2003 (2003)Google Scholar
  12. 12.
    Steuer, R.E.: Multiple criteria optimization. In: Theory, Computation, and Application. Wiley, New York (1986)Google Scholar
  13. 13.
    Knowles, J., Corne, D.: Approximating the non-dominated front using the Pareto Archived Evolution Strategy (1999)Google Scholar
  14. 14.
    Zhang, Q., Izquierdo, E.: A Multi-Feature Optimization Approach to Object-Based Image Classification. In: Sundaram, H., Naphade, M., Smith, J.R., Rui, Y. (eds.) CIVR 2006. LNCS, vol. 4071, pp. 310–319. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Manjunath, B.S., Ma, W.T.: Texture features for browsing and retrieval of image data. IEEE Trans. On Pattern Analysis and Machine Intelligence 18(8), 837–842 (1996)CrossRefGoogle Scholar
  16. 16.
    Tuceryan, M., Jain, A.K.: Texture Analysis. In: The Handbook of Pattern Recognition and Computer Vision, 2nd edn., pp. 207–248. World Scientific Publishing Co., Singapore (1998)Google Scholar
  17. 17.
    Swain, M., Ballard, D.: Color indexing. International Journal of Computer Vision (1991)Google Scholar
  18. 18.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons, CA (2001)MATHGoogle Scholar
  19. 19.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, Inc., San Francisco (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Qianni Zhang
    • 1
  • Ebroul Izquierdo
    • 1
  1. 1.Department of Electronic Engineering, Queen MaryUniversity of LondonLondonU.K.

Personalised recommendations