Entry Uniqueness in Margined Tables

  • Shmuel Onn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4302)


We consider a problem in secure disclosure of multiway table margins. If the value of an entry in all tables having the same margins as those released from a source table in a data base is unique, then the value of that entry can be exposed and disclosure is insecure. We settle the computational complexity of detecting whether this situation occurs. In particular, for multiway tables where one category is significantly richer than the others, that is, when each sample point can take many values in one category and only few values in the other categories, we provide, for the first time, a polynomial time algorithm for checking uniqueness, allowing disclosing agencies to check entry uniqueness and make learned decisions on secure disclosure. Our proofs use our recent results on universality of 3-way tables and on n-fold integer programming, which we survey on the way.


Polynomial Time Polynomial Time Algorithm Integer Point Integer Programming Problem Markov Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aoki, S., Takemura, A.: Minimal basis for connected Markov chain over 3×3×K contingency tables with fixed two-dimensional marginals. Austr. New Zeal. J. Stat. 45, 229–249 (2003)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cox, L.H.: Bounds on entries in 3-dimensional contingency tables. In: Domingo-Ferrer, J. (ed.) Inference Control in Statistical Databases. LNCS, vol. 2316, pp. 21–33. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Cox, L.H.: On properties of multi-dimensional statistical tables. J. Stat. Plan. Infer. 117, 251–273 (2003)MATHCrossRefGoogle Scholar
  4. 4.
    De Loera, J., Onn, S.: The complexity of three-way statistical tables. SIAM J. Comp. 33, 819–836 (2004)MATHCrossRefGoogle Scholar
  5. 5.
    De Loera, J., Onn, S.: All rational polytopes are transportation polytopes and all polytopal integer sets are contingency tables. In: Bienstock, D., Nemhauser, G.L. (eds.) IPCO 2004. LNCS, vol. 3064, pp. 338–351. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    De Loera, J., Onn, S.: Markov bases of three-way tables are arbitrarily complicated. J. Symb. Comp. 41, 173–181 (2006)MATHCrossRefGoogle Scholar
  7. 7.
    De Loera, J., Onn, S.: All linear and integer programs are slim 3-way transportation programs. SIAM J. Optim. (to appear)Google Scholar
  8. 8.
    De Loera, J., Hemmecke, R., Onn, S., Weismantel, R.: N-fold integer programming (submitted)Google Scholar
  9. 9.
    Duncan, G.T., Fienberg, S.E., Krishnan, R., Padman, R., Roehrig, S.F.: Disclosure limitation methods and information loss for tabular data. In: Confidentiality, Disclosure and Data Access: Theory and Practical Applications for Statistical Agencies, North-Holland (2001)Google Scholar
  10. 10.
    Irving, R., Jerrum, M.R.: Three-dimensional statistical data security problems. SIAM J. Comp. 23, 170–184 (1994)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Vlach, M.: Conditions for the existence of solutions of the three-dimensional planar transportation problem. Disc. App. Math. 13, 61–78 (1986)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Yemelichev, V.A., Kovalev, M.M., Kravtsov, M.K.: Polytopes, Graphs and Optimisation. Cambridge University Press, Cambridge (1984)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shmuel Onn
    • 1
  1. 1.Technion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations