A New Hybrid Traffic Engineering Routing Algorithm for Bandwidth Guaranteed Traffic

  • Zhaowei Meng
  • Jinshu Su
  • Stefano Avallone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4311)


This paper presents a new hybrid traffic engineering routing algorithm for bandwidth guaranteed traffic. Former traffic engineering routing algorithms mainly optimize one of the three objectives: minimizing the hop count, balancing the load and minimizing the interference between source-destination pairs. But usually there is a tradeoff among these three factors. Single objective optimizations can’t get the best performance. The main contribution of this paper is a new hybrid approach to consider the three objectives together. From the simulation results, the proposed algorithm has better performance than former algorithms.


Critical Link Link Utilization Traffic Engineering Label Switch Path Bandwidth Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Awduche, D., Malcolm, J., Agogbua, J., et al.: Requirements for Traffic Engineering Over MPLS. IETF RFC 2702 (1999)Google Scholar
  2. 2.
    Lahoud, S., Texier, G., Toutain, L.: Classification and Evaluation of Constraint-Based Routing Algorithms for MPLS Traffic Engineering. In: 6ème rencontres francophones sur les aspects algorithmiques des télécommunications(AlgoTel 2004), Batz-sur-mer, France (2004)Google Scholar
  3. 3.
    Guérin, R.A., Orda, A., Williams, D.: QoS Routing Mechanisms and OSPF Extensions. In: Proceedings of IEEE Global Communications Conference 1997 (GLOBECOM 1997), pp. 1903–1908 (1997)Google Scholar
  4. 4.
    Wang, Z., Crowcroft, J.: Quality-of-Service Routing for Supporting Multimedia Applications. IEEE Journal on Selected Areas in Communications 14, 1228–1234 (1996)CrossRefGoogle Scholar
  5. 5.
    Ma, Q., Steenkiste, P.: On Path Selection for Traffic with Bandwidth Guarantees. In: Proceedings of IEEE International Conference on Network Protocols 1997 (ICNP 1997), pp. 191–202 (1997)Google Scholar
  6. 6.
    Wang, Y., Wang, Z.: Explicit routing for Internet traffic engineering. In: IEEE International Conference on Computer Communications and Networks (ICCCN 1999), Piscataway, NJ, USA, pp. 582–588 (1999)Google Scholar
  7. 7.
    Kodialam, M.S., Lakshman, T.V.: Minimum Interference Routing with Applications to MPLS Traffic Engineering. In: INFOCOM 2000, Tel Aviv, Israel, pp. 884–893 (2000)Google Scholar
  8. 8.
    Suri, S., Waldvogel, M., Warkhede, P.R.: Profilebased Routing: A new Framework for MPLS Traffic Engineering. In: Smirnov, M., Crowcroft, J., Roberts, J., Boavida, F. (eds.) QofIS 2001. LNCS, vol. 2156, pp. 138–157. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Xu, Y.-X., Zhang, G.-D.: Models and Algorithms of QoS-based Routing with MPLS Traffic engineering. In: IEEE 5th International Conference on High-Speed Networks and Multimedia Communications (HSNMC 2002), Jeju, Korea, pp. 128–132 (2002)Google Scholar
  10. 10.
    Wang, B., Su, X., Philip Chen, C.L.: A New Bandwidth Guaranteed Routing Algorithm for MPLS Traffic Engineering. In: IEEE International Conference on Communications 2002 (ICC 2002), New York, NY, USA, pp. 1001–1005 (2002)Google Scholar
  11. 11.
    Sa-Ngiamsak, W., Varakulsiripunth, R.: A Bandwidth-Based Constraint Routing Algorithm for Multi-Protocol LabelSwitching Networks. In: The 6th International Conference on Advanced Communication Technology (IEEE ICACT 2004), Phoenix Park, Korea, pp. 933–937 (2004)Google Scholar
  12. 12.
    Ma, Q., Steenkiste, P.: On path selection for traffic with bandwidth guarantees. In: Fifth International Conference on Network Protocols (ICNP 1997), Atlanta, GA, USA, pp. 191–202 (1997)Google Scholar
  13. 13.
    Ma, Q., Steenkiste, P.: Supporting Dynamic Inter-Class Resource Sharing: A Multi-Class QoS Routing Algorithm. In: IEEE INFOCOM 1999, New York, NY, USA, pp. 649–660 (1999)Google Scholar
  14. 14.
    Hendling, K., Statovci-Halimi, B., Franzl, G., et al.: A New Bandwidth Guaranteed Routing Approach for Online Calculation of LSPs for MPLS Traffic Engineering. In: Marshall, A., Agoulmine, N. (eds.) MMNS 2003. LNCS, vol. 2839, pp. 220–232. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Banerjee, G., Sidhu, D.: Path Computation for Traffic Engineering in MPLS Networks. In: Lorenz, P. (ed.) ICN 2001. LNCS, vol. 2094, pp. 302–308. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Tan, S.-W., Lee, S.-W., Vaillaint, B.: Non-greedy minimum interference routing algorithm for bandwidth-guaranteed flows. Computer Communications 25(17), 1640–1652 (2002)CrossRefGoogle Scholar
  17. 17.
    Banglore, K.: A Minimum Interference Hybrid Algorithm for MPLS Networks, Master thesis, Florida State University (2002)Google Scholar
  18. 18.
    Leduc, G., Abrahamsson, H., Balon, S., Bessler, S., D’Arienzo, M., Delcourt, O., Domingo-Pascual, J., Cerav-Erbas, S., Gojmerac, I., Masip, X., Pescaph, A., Quoitin, B., Romano, S.F., Salvatori, E., Skivée, F., Tran, H.T., Uhlig, S., Ümit, H.: An open source traffic engineering toolbox. Accepted to Computer Communications (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zhaowei Meng
    • 1
  • Jinshu Su
    • 1
  • Stefano Avallone
    • 2
  1. 1.School of ComputerNational University of Defense TechnologyChangshaP.R. China
  2. 2.COMICS Lab, Dipartimento di Informatica e SistemisticaUniversit‘a di Napoli Federico IINapoliItaly

Personalised recommendations