Advertisement

New Variant of the Self-Shrinking Generator and Its Cryptographic Properties

  • Ku-Young Chang
  • Ju-Sung Kang
  • Mun-Kyu Lee
  • Hangrok Lee
  • Dowon Hong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4296)

Abstract

We propose a variant of the self-shrinking generator, which is constructed using an extended selection rule. This new generator is called SSG-XOR since the selection rule is determined by the XORed value of a couple of bits. It is shown that the period and the linear complexity of an output sequence of SSG-XOR are better than those of the self-shrinking generator. It is also shown that the SSG-XOR generator has meaningful advantages from the viewpoint of practical cryptanalysis.

Keywords

Linear Complexity Minimal Polynomial Stream Cipher Primitive Element Output Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blackburn, S.R.: The linear complexity of the self-shrinking generator. IEEE Trans. Inform. Theory 45(6), 2073–2077 (1999)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Coppersmith, D., Krawczyk, H., Mansour, Y.: The Shrinking Generator. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg (1994)Google Scholar
  3. 3.
    Ekdahl, P., Meier, W., Johansson, T.: Predicting the shrinking generator with fixed connections. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 330–344. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Golić, J.D.: Correlation Analysis of the Shrinking Generator. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 440–457. Springer, Heidelberg (2001)Google Scholar
  5. 5.
    Krause, M.: BDD-based cryptanalysis of keystream generators. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 222–237. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cambridge Univ. Press, Cambridge (1994)MATHGoogle Scholar
  7. 7.
    Meier, W., Staffelbach, O.: The Self-shrinking Generator. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 205–214. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  8. 8.
    Mihaljević, M.J.: A faster cryptanalysis of the self-shrinking generator. In: Pieprzyk, J.P., Seberry, J. (eds.) ACISP 1996. LNCS, vol. 1172, pp. 182–189. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  9. 9.
    Simpson, L., Golić, J.D., Dawson, E.: A Probabilistic Correlation Attack on the Shrinking Generator. In: Boyd, C., Dawson, E. (eds.) ACISP 1998. LNCS, vol. 1438, pp. 147–158. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Zenner, E., Krause, M., Lucks, S.: Improved cryptanalysis of the self-shrinking Generator. In: Varadharajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 21–35. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ku-Young Chang
    • 1
  • Ju-Sung Kang
    • 2
  • Mun-Kyu Lee
    • 3
  • Hangrok Lee
    • 1
  • Dowon Hong
    • 1
  1. 1.Electronics and Telecommunications Research InstituteDaejeonKorea
  2. 2.Department of MathematicsKookmin UniversitySeoulKorea
  3. 3.School of Computer Science and EngineeringInha UniversityIncheonKorea

Personalised recommendations