Theoretical Framework for a Practical Evaluation and Comparison of Audio Watermarking Schemes in the Triangle of Robustness, Transparency and Capacity

  • Jana Dittmann
  • David Megías
  • Andreas Lang
  • Jordi Herrera-Joancomartí
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4300)

Abstract

Digital watermarking is a growing research area to mark digital content (image, audio, video, etc.) by embedding information into the content itself. This technique opens or provides additional and useful features for many application fields (like DRM, annotation, integrity proof and many more). The role of watermarking algorithm evaluation (in a broader sense benchmarking) is to provide a fair and automated analysis of a specific approach if it can fulfill certain application requirements and to perform a comparison with different or similar approaches. Today most algorithm designers use their own methodology and therefore the results are hardly comparable. Derived from the variety of actually presented evaluation procedures in this paper, firstly we introduce a theoretical framework for digital robust watermarking algorithms where we focus on the triangle of robustness, transparency and capacity. The main properties and measuring methods are described. Secondly, a practical environment shows the predefined definition and introduces the practical relevance needed for robust audio watermarking benchmarking. Our goal is to provide a more partial precise methodology to test and compare watermarking algorithms. The hope is that watermarking algorithm designers will use our introduced methodology for testing their algorithms to allow a comparison with existing algorithms more easily. Our work should be seen as a scalable and improvable attempt for a formalization of a benchmarking methodology in the triangle of transparency, capacity and robustness.

Keywords

Audio Signal Watermark Scheme Digital Watermark Detection Function Algorithm Evaluation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Evaluation of Natural Language Processing Systems, FINAL REPORT, EAGLES DOCUMENT EAG-EWG-PR.2, Version of September 1995, section Methods for System Measurement (May 2006), http://www.issco.unige.ch/ewg95/
  2. 2.
    Macq, B., Dittmann, J., Delp, E.J.: Benchmarking of Image Watermarking Algorithms for Digital Rights Management. Proceedings of the IEEE, Special Issue on: Enabling Security Technology for Digital Rights Management 92(6), 971–984 (2004)Google Scholar
  3. 3.
    Cayre, F., Fontaine, C., Furon, T.: Watermarking security, part I: theory. In: Wong, P.W., Delp III, E.J. (eds.) Security, Steganography and Watermarking of Multimedia Contents VII, Proceedings of SPIE, San Jose, USA, vol. 5681 (2005)Google Scholar
  4. 4.
    Cayre, F., Fontaine, C., Furon, T.: Watermarking security, part II: practice. In: Wong, P.W., Delp III, E.J. (eds.) Security, Steganography and Watermarking of Multimedia Contents VII. Proceedings of SPIE, San Jose, USA, vol. 5681 (2005)Google Scholar
  5. 5.
    Checkmark Benchmarking (2006), http://watermarking.unige.ch/Checkmark/
  6. 6.
    Cox, I.J., Kilian, J., Leighton, T., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing 6(12), 1673–1687 (1997)CrossRefGoogle Scholar
  7. 7.
    The Culture Tech Project, Cultural Dimensions in digital Multimedia Security Technology, a project funded under the EU-India Economic Cross Cultural Program, requested (July 2005), http://amsl-smb.cs.uni-magdeburg.de/culturetech/
  8. 8.
    Dittmann, J.: Digitale Wasserzeichen. Springer, Berlin, Xpert.press (2000) ISBN 3-540-66661-3Google Scholar
  9. 9.
    Dittmann, J., Steinebach, M., Lang, A., Zmudizinski, S.: Advanced audio watermarking benchmarking, Security, Steganography, and Watermarking of Multimedia Contents VI. In: Delp III, E.J., Wong, P.W. (eds.) SPIE and IS&T, January 19-22. Electronic Imaging Science and Technology, San Jose, California, USA, vol. 5306, pp. 224–235 (2004) ISBN 0-8194-5209-2Google Scholar
  10. 10.
    Domingo-Ferrer, J., Herrera-Joancomartí, J.: Simple collusion-secure fingerprinting schemes for images. In: Proceedings of the Information Technology: Coding and Computing ITCC 2000, pp. 128–132. IEEE Computer Society Press, Los Alamitos (2000)CrossRefGoogle Scholar
  11. 11.
    Dugad, R., Ratakonda, K., Ahuja, N.: A New Wavelet-Based Scheme for Watermarking Images. In: IEEE International Conference on Image Processing, Chicago (1998)Google Scholar
  12. 12.
    Fridrich, J.: Applications of data hiding in digital images. In: Tutorial for the ISPACS 1998 conference in Melburne, Australia (1998)Google Scholar
  13. 13.
    Inoue, H., Miyazaki, A., Yamamoto, A., Katsura, T.: A Digital Watermarking Technique Based on the Wavelet Transform and Its Robustness on Image Compression and Transformation. IEICE Trans. Fundamentals E82-A(1) (1999)Google Scholar
  14. 14.
    ITU-R Recommendation BS.1387, Method for Objective Measurements of Perceived Audio Quality (December 1998), http://www.itu.int/rec/R-REC-bs/en
  15. 15.
    Jerri, A.J.: The Shannon sampling theorem – its various extensions and application: a tutorial review. Proc. IEEE 65, 1565–1597 (1977)MATHCrossRefGoogle Scholar
  16. 16.
    Kalker, T.: Considerations on watermarking security. In: Proceedings of the IEEE Multimedia Signal Processing MMSP 2001 workshop, Cannes, France, pp. 201–206 (2001)Google Scholar
  17. 17.
    Kirovski, D., Malvar, H.S.: Spread Spectrum Watermarking of Audio Signals. IEEE Transactions on Signal Processing 51(4), 1020–1033 (2003)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Kraetzer, C., Dittmann, J., Lang, A.: Transparency benchmarking on audio watermarks and steganography. In: SPIE conference, at the Security, Steganography, and Watermarking of Multimedia Contents VIII, IS&T/SPIE Symposium on Electronic Imaging, San Jose, USA, January 15-19 (to appear, 2006)Google Scholar
  19. 19.
    Kutter, M., Voloshynovskiy, S., Herrigel, A.: Watermark copy attack. In: Wong, P.W., Delp, E.J. (eds.) IS&T/SPIEs 12th Annual Symposium, Electronic Imaging 2000: Security and Watermarking of Multimedia Content II, San Jose, California USA, SPIE Proceedings, January 23-28, vol. 3971 (2000)Google Scholar
  20. 20.
    Lang, A., Dittmann, J.: StirMark and profiles: from high end up to preview scenarios, Virtual Goods 2004, Ilmenau, May 27-29 (2004) (to appear), http://virtualgoods.tu-ilmenau.de/2004/
  21. 21.
    Lang, A., Dittmann, J.: Profiles for Evaluation - the Usage of Audio WET. In: SPIE conference, at the Security, Steganography, and Watermarking of Multimedia Contents VIII, IS&T/SPIE Symposium on Electronic Imaging, San Jose, USA, January 15-19 (2006)Google Scholar
  22. 22.
    Lang, A., Dittmann, J.: Digital Watermarking of Biometric Speech References: Impact to the EER System Performance. In: SPIE conference, at the Security, Steganography, and Watermarking of Multimedia Contents IX, IS&T/SPIE Symposium on Electronic Imaging, San Jose, USA, January 28-February 0, 2006 (to appear, 2007)Google Scholar
  23. 23.
    Lang, A., Dittmann, J., Lin, E.T., Delp, E.J.: Application oriented audio watermark benchmark service. In: Delp, E.J., Wong, P.W. (eds.) Security, steganography, and watermarking of multimedia contents VII, San Jose, California, USA, Bellingham, Wash., January 7-20. Electronic imaging science and technology, pp. 275–286 (2005) ISBN 0-8194-5654-3Google Scholar
  24. 24.
    Lang, A., Dittmann, J., Spring, R., Vielhauer, C.: Audio watermark attacks: from single to profile attacks. In: City University of New York (Veranst.): Multimedia and Security, MM & Sec 2005 (Workshop New York, NY, USA August 1-2 2005), pp. 39–50. ACM, New York (2005)Google Scholar
  25. 25.
    Lerch, A.: zplane.development, EAQUAL - Evaluation of Audio Quality, Version: 0.1.3 alpha (2002), http://www.mp3-tech.org/programmer/misc.html
  26. 26.
    libSNDfile library (May 2006), http://www.mega-nerd.com/libsndfile/
  27. 27.
    Megías, D., Herrera-Joancomartí, J., Minguillón, J.: A robust audio watermarking scheme based on MPEG 1 layer 3 compression. In: Lioy, A., Mazzocchi, D. (eds.) CMS 2003. LNCS, vol. 2828, pp. 226–238. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  28. 28.
    Megías, D., Herrera-Joancomartí, J., Minguillón, J.: An audio watermarking scheme robust against stereo attacks. In: Proceedings of the Multimedia and Security Workshop, Magdeburg (Germany), September 2004, pp. 206–213. ACM Press, New York (2004)CrossRefGoogle Scholar
  29. 29.
    Megías, D., Herrera-Joancomartí, J., Minguillón, J.: Robust frequency domain audio watermarking: a tuning analysis. In: Cox, I., Kalker, T., Lee, H.-K. (eds.) IWDW 2004. LNCS, vol. 3304, pp. 244–258. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
  31. 31.
    Pérez-Freire, L., Comesaña, P., Pérez-González, F.: Information-Theoretic Analysis of Security in Side-Informed Data Hiding. Information Hiding, 131–145 (2005)Google Scholar
  32. 32.
    Petitcolas, F.A.P., Steinebach, M., Raynal, F., Dittmann, J., Fontaine, C., Fates, N.: Public automated web-based evaluation service for watermarking schemes: StirMark Benchmark. In: Wong, P.W., Delp III, E.J. (eds.) Security and Watermarking of Multimedia Contents III, Bellingham WA, USA. Proceedings of SPIE, vol. 4314, pp. 575–584 (2001) ISBN 0-8194-3992-4Google Scholar
  33. 33.
    Shapiro, J.M.: Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Processing 41(12), 3445–3462 (1993)MATHCrossRefGoogle Scholar
  34. 34.
    SQAM — Sound Quality Assessment Material (2006), http://sound.media.mit.edu/mpeg4/audio/sqam/
  35. 35.
  36. 36.
    StirMark Benchmark for Audio (2005), http://amsl-smb.cs.uni-magdeburg.de/
  37. 37.
    Vielhauer, C., Scheidat, T., Lang, A., Schott, M., Dittmann, J., Basu, T.K., Dutta, P.K.: Multimodal Speaker Authentication – Evaluation of Recognition Performance of Watermarked References. In: Proceedings of MMUA 2006, Toulouse, France (2006)Google Scholar
  38. 38.
    Voloshynovskiy, S., et al.: Attacks on Digital Watermarks: Classification, Estimation-Based Attacks, and Benchmarks. IEEE Communications Magazine 39(8), 118–126 (2001)CrossRefGoogle Scholar
  39. 39.
    Watermark Evaluation Testbed for Audio (2006), http://audio-wet.cs.uni-magdeburg.de/

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jana Dittmann
    • 1
  • David Megías
    • 2
  • Andreas Lang
    • 1
  • Jordi Herrera-Joancomartí
    • 2
  1. 1.Otto-von-Guericke University of MagdeburgGermany
  2. 2.Universitat Oberta de CatalunyaSpain

Personalised recommendations