A Mixed Initiative Semantic Web Framework for Process Composition

  • Jinghai Rao
  • Dimitar Dimitrov
  • Paul Hofmann
  • Norman Sadeh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4273)


Semantic Web technologies offer the prospect of significantly reducing the amount of effort required to integrate existing enterprise functionality in support of new composite processes.– whether within a given organization or across multiple ones. A significant body of work in this area has aimed to fully automate this process, while assuming that all functionality has already been encapsulated in the form of semantic web services with rich and accurate annotations. In this article, we argue that this assumption is often unrealistic. Instead, we describe a mixed initiative framework for semantic web service discovery and composition that aims at flexibly interleaving human decision making and automated functionality in environments where annotations may be incomplete and even inconsistent. An initial version of this framework has been implemented in SAP’s Guided Procedures, a key element of SAP’s Enterperise Service Architecture (ESA).


Service Composition Service Discovery Composite Service Semantic Reasoning Guided Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    W3C: OWL Web Ontology Language Overview, W3C Recommendation (February 2004), http://www.w3.org/TR/owl-features/
  2. 2.
    Martin, et al.: OWL-S: Semantic Markup for Web Services, W3C member submission (November 2004), http://www.w3.org/Submission/OWL-S/
  3. 3.
    Hildum, D., Sadeh, N., Laliberty, T.J., Smith, S., McA’Nulty, J., Kjenstad, D.: Mixed-initiative Management of Integrated Process-Planning and Production-Scheduling Solutions. In: Proceedings of NSF Research Planning Workshop on Artificial Intelligence and Manufacturing (June 1996)Google Scholar
  4. 4.
    Sadeh, N.M., Hildum, D.W., Laliberty, T.J., McA’Nulty, J., Kjenstad, D., Tseng, A.: A Blackboard Architecture for Integrating Process Planning and Production Scheduling. Concurrent Engineering: Research and Applications 6(2) (June 1998)Google Scholar
  5. 5.
    Rao, J.: Semantic Web Service Composition via Logic-based Program Synthesis. PhD Thesis (December 2004)Google Scholar
  6. 6.
    Friedman-Hill, E.: Jess in Action: Java Rule-based Systems, Manning Publications Company (June 2003), http://herzberg.ca.sandia.gov/jess/
  7. 7.
    Gandon, F., Sadeh, N.: Semantic Web Technologies to Reconcile Privacy and Context Awareness. Web Semantics Journal 1(3) (2004)Google Scholar
  8. 8.
    Sycara, K., Widoff, S., Klusch, M., Lu, J.: Larks: Dynamic matchmaking among heterogeneous software agents in cyberspace. Autonomous Agents and Multi-Agent Systems 5(3) (September 2002)Google Scholar
  9. 9.
    O’Sullivan, J., Edmond, D., Hofstede, A.T.: What’s in a service? Towards accurate description of non-functional service properties. Distributed and Parallel Databases 12, 117–133 (2002)MATHCrossRefGoogle Scholar
  10. 10.
    Blum, A., Furst, M.: Fast Planning Through Planning Graph Analysis. Artificial Intelligence 90, 281–300 (1997)MATHCrossRefGoogle Scholar
  11. 11.
    Anderson, C., Smith, D., Weld, D.: Conditional Effects in Graphplan. In: The 4th Intl. Conference on AI Planning Systems (AIPS 1998), Pittsburgh, PA (1998)Google Scholar
  12. 12.
    Rao, J., Su, X.: A Survey of Automated Web Service Composition Methods. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Peer, J.: Web Service Composition as AI Planning - a Survey, Technical Report Univ. of St. Gallen (2005), http://elektra.mcm.unisg.ch/pbwsc/docs/pfwsc.pdf
  14. 14.
    Casati, F., Ilnicki, S., Jin, L.: Adaptive and dynamic service composition in EFlow. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Sirin, E., Hendler, J., Parsia, B.: Semi-automatic composition of Web services using semantic descriptions. In: Proceedings of Web Services: Modeling, Architecture and Infrastructure (2002)Google Scholar
  16. 16.
    Anzboeck, R., Dustdar, S.: Semi-automatic generation of Web services and BPEL processes - A Model-Driven approach. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 64–79. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
  18. 18.
  19. 19.
  20. 20.
  21. 21.
    Web Service Modeling Ontology, http://www.wsmo.org/
  22. 22.
    Gandon, F., Sadeh, N.: OWL Inference Engine Using XSLT and JESS (2003), available at: http://www.cs.cmu.edu/~sadeh/MyCampusMirror/OWLEngine.html
  23. 23.
  24. 24.
  25. 25.
    The Jena RDF/XML Parser, http://www.hpl.hp.com/personal/jjc/arp/
  26. 26.
    The Lehigh Univeristy Benchmark, http://swat.cse.lehigh.edu/projects/lubm/
  27. 27.
    Allen, J.F.: Mixed initiative planning: Position paper. In: ARPA/Rome Labs Planning Initiative Workshop (1994)Google Scholar
  28. 28.
    Burstein, M.H., McDermott, D.V.: Issues in the development of human-computer mixed-initiative planning. In: Cognitive Technology: In Search of a Human Interface, pp. 285–303. Elsevier, Amsterdam (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jinghai Rao
    • 1
  • Dimitar Dimitrov
    • 2
  • Paul Hofmann
    • 2
  • Norman Sadeh
    • 1
  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA
  2. 2.SAP AGWalldorfGermany

Personalised recommendations