Information Integration Via an End-to-End Distributed Semantic Web System

  • Dimitre A. Dimitrov
  • Jeff Heflin
  • Abir Qasem
  • Nanbor Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4273)


A distributed, end-to-end information integration system that is based on the Semantic Web architecture is of considerable interest to both commercial and government organizations. However, there are a number of challenges that have to be resolved to build such a system given the currently available Semantic Web technologies. We describe here the ISENS prototype system we designed, implemented, and tested (on a small scale) to address this problem. We discuss certain system limitations (some coming from underlying technologies used) and future ISENS development to resolve them and to enable an extended set of capabilities.


Description Logic Information Integration SPARQL Query ISENS System Commercial Aircraft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Halevy, A.Y., Ashish, N., Bitton, D., Carey, M., Draper, D., Pollock, J., Rosenthal, A., Sikka, V.: Enterprise information integration: successes, challenges and controversies. In: SIGMOD 2005: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 778–787. ACM Press, New York (2005)CrossRefGoogle Scholar
  2. 2.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. (2001)Google Scholar
  3. 3.
    Heflin, J.: Towards the Semantic Web: Knowledge Representation in a Dynamic, Distributed Environment. PhD thesis, University of Maryland (2001)Google Scholar
  4. 4.
    Ullman, J.D.: Information integration using logical views. In: Afrati, F.N., Kolaitis, P.G. (eds.) ICDT 1997. LNCS, vol. 1186, pp. 19–40. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    SPARQL: Query Language for RDF, W3C Working Draft,
  6. 6.
    Pottinger, R., Halevy, A.: MiniCon: A scalable algorithm for answering queries using views. VLDB Journal: Very Large Data Bases 10(2–3), 182–198 (2001)MATHGoogle Scholar
  7. 7.
    Broekstra, J., Kampman, A.: Sesame: A generic architecture for storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, p. 54. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Aduna: Sesame RDF Framework,
  9. 9.
    Motik, B.: KAON2: infrastructure for managing OWL-DL and SWRL ontologies,
  10. 10.
    Halevy, A., Ives, Z., Suciu, D., Tatarinov, I.: Schema mediation in peer data management systems. In: Proc. of ICDE (2003)Google Scholar
  11. 11.
    Guo, Y., Pan, Z., Heflin, J.: An evaluation of knowledge base systems for large OWL datasets. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 274–288. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dimitre A. Dimitrov
    • 1
  • Jeff Heflin
    • 2
  • Abir Qasem
    • 2
  • Nanbor Wang
    • 1
  1. 1.Tech-X CorporationBoulderUSA
  2. 2.Lehigh UniversityBethlehemUSA

Personalised recommendations