A Method for Learning Part-Whole Relations

  • Willem Robert van Hage
  • Hap Kolb
  • Guus Schreiber
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4273)


Part-whole relations are important in many domains, but typically receive less attention than subsumption relation. In this paper we describe a method for finding part-whole relations. The method consists of two steps: (i) finding phrase patterns for both explicit and implicit part-whole relations, and (ii) applying these patterns to find part-whole relation instances. We show results of applying this method to a domain of finding sources of carcinogens.


Ontology Alignment Subsumption Relation Alignment Relation Retrieval Step Search Engine Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Artale, A., Franconi, E., Guarino, N., Pazzi, L.: Part-whole relations in object-centered systems: an overview. Data & Knowledge Engineering 20(3), 347–383 (1996)MATHCrossRefGoogle Scholar
  2. 2.
    Berland, M., Charniak, E.: Finding parts in very large corpora. In: Proc. of the 37th Annual Meeting of the Association for Computational Linguistics (1999)Google Scholar
  3. 3.
    Buscaldi, D., Rosso, P., Arnal, E.S.: A wordnet-based query expansion method for geographical information retrieval. In: Working Notes for the CLEF 2005 Workshop (2005)Google Scholar
  4. 4.
    Etzioni, O., Cafarella, M., Downey, D., Shaked, A.-M.P.T., Soderland, S., Weld, D.S., Yates, A.: Methods for domain-independent information extraction from the web: An experimental comparison. In: Proc. of the AAAI Conference (2004)Google Scholar
  5. 5.
    Finkelstein-Landau, M., Morin, E.: Extracting semantic relationships between terms: Supervised vs. unsupervised methods. In: International Workshop on Ontological Engineering on the Global Information Infrastructure, pp. 71–80 (1999)Google Scholar
  6. 6.
    Girju, R., Badulescu, A., Moldovan, D.: Learning semantic constraints for the automatic discovery of part-whole relations. In: Proc. of the HLT-NAACL (2003)Google Scholar
  7. 7.
    Guarino, N., Welty, C.: An overview of ontoclean. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 151–171. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Hollink, L.: Semantic Annotation for Retrieval of Visual Resources. PhD thesis, Free University Amsterdam (submitted, 2006),
  9. 9.
    Miller, G.A.: Wordnet: a lexical database for english. Communications of the ACM (CACM) 38(11), 39–41 (1995)CrossRefGoogle Scholar
  10. 10.
    Schulz, S., Hahn, U.: Part-whole representation and reasoning in formal biomedical ontologies. Artificial Intelligence in Medicine 34(3), 179–200 (2005)CrossRefGoogle Scholar
  11. 11.
    van Hage, W.R., Katrenko, S., Schreiber, G.: A Method to Combine Linguistic Ontology-Mapping Techniques. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 732–744. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Winston, M.E., Chaffin, R., Herrmann, D.: A taxonomy of part-whole relations. Cognitive Science 11, 417–444 (1987)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Willem Robert van Hage
    • 1
    • 2
  • Hap Kolb
    • 1
  • Guus Schreiber
    • 2
  1. 1.TNO Science & Industry Delft 
  2. 2.Vrije Universiteit Amsterdam 

Personalised recommendations