Augmenting Navigation for Collaborative Tagging with Emergent Semantics

  • Melanie Aurnhammer
  • Peter Hanappe
  • Luc Steels
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4273)


We propose an approach that unifies browsing by tags and visual features for intuitive exploration of image databases. In contrast to traditional image retrieval approaches, we utilise tags provided by users on collaborative tagging sites, complemented by simple image analysis and classification. This allows us to find new relations between data elements. We introduce the concept of a navigation map, that describes links between users, tags, and data elements for the example of the collaborative tagging site Flickr. We show that introducing similarity search based on image features yields additional links on this map. These theoretical considerations are supported by examples provided by our system, using data and tags from real Flickr users.


Visual Feature Image Retrieval Similarity Search Query Image Additional Link 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American (2001)Google Scholar
  2. 2.
    Cattuto, C.: Collaborative tagging as a complex system. Talk given at International School on Semiotic Dynamics, Language and Complexity, Erice (2005)Google Scholar
  3. 3.
    Steels, L.: Semiotic dynamics for embodied agents. IEEE Intelligent Systems, 32–38 (2006)Google Scholar
  4. 4.
    Steels, L., Kaplan, F.: Collective learning and semiotic dynamics. In: Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 679–688. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Steels, L., Hanappe, P.: Interoperability through emergent semantics: A semiotic dynamics approach. Journal of Data Semantics (to appear, 2006)Google Scholar
  6. 6.
    Wiederhold, G.: Mediators in the architecture of future information systems. IEEE Computer, 38–49 (1992)Google Scholar
  7. 7.
    Rahm, E., Bernstein, A.P.: A survey of approaches to automatic schema matching. VLDB Journal: Very Large Data Bases (10), 334–350 (2001),
  8. 8.
    Tzitzikas, Y., Meghini, C.: Ostensive automatic schema mapping for taxonomy-based peer-to-peer systems. In: Klusch, M., Omicini, A., Ossowski, S., Laamanen, H. (eds.) CIA 2003. LNCS (LNAI), vol. 2782, pp. 78–92. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Santini, S., Gupta, A., Jain, R.: Emergent semantics through interaction in image databases. IEEE Transactions on Knowledge and Data Engineering 13, 337–351 (2001)CrossRefGoogle Scholar
  10. 10.
    Aberer, K., Cudré-Mauroux, P., Ouksel, A.M., Catarci, T., Hacid, M.S., Illarramendi, A., Kashyap, V., Mecella, M., Mena, E., Neuhold, E.J., Troyer, O.D., Risse, T., Scannapieco, M., Saltor, F., Santis, L.D., Spaccapietra, S., Staab, S., Studer, R.: Emergent semantics principles and issues. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 25–38. Springer, Heidelberg (2004), CrossRefGoogle Scholar
  11. 11.
    Staab, S.: Emergent semantics. IEEE Intelligent Systems, 78–86 (2002),
  12. 12.
    Steels, L.: Emergent semantics. IEEE Intelligent Systems, 83–85 (2002)Google Scholar
  13. 13.
    Bumgardner, J.: Experimental colr pickr (2006),
  14. 14.
    Langreiter, C.: Retrievr (2006),
  15. 15.
    Grosky, W.I., Fotouhi, F., Sethi, I.K., Capatina, B.: Using metadata for the intelligent browsing of structured media objects. ACM SIGMOD Record 23(4), 49–56 (1994)CrossRefGoogle Scholar
  16. 16.
    Alvarado, P., Doerfler, P., Wickel, J.: Axon2 – a visual object recognition system for non-rigid objects. In: Proceedings International Conference on Signal Processing, Pattern Recognition and Applications (SPPRA) (2001)Google Scholar
  17. 17.
    Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance feedback: A power tool for interactive content–based image retrieval. IEEE Transactions on Circuits and Systems for Video Technology 8(5), 644–655 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Melanie Aurnhammer
    • 1
  • Peter Hanappe
    • 1
  • Luc Steels
    • 1
    • 2
  1. 1.Sony Computer Science LaboratoryParisFrance
  2. 2.Vrije Universiteit BrusselBrusselsBelgium

Personalised recommendations