Integrating and Querying Parallel Leaf Shape Descriptions

  • Shenghui Wang
  • Jeff Z. Pan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4273)


Information integration and retrieval have been important problems for many information systems — it is hard to combine new information with any other piece of related information we already possess, and to make them both available for application queries. Many ontology-based applications are still cautious about integrating and retrieving information from natural language (NL) documents, preferring structured or semi-structured sources. In this paper, we investigate how to use ontologies to facilitate integrating and querying information on parallel leaf shape descriptions from NL documents. Our approach takes advantage of ontologies to precisely represent the semantics in shape description, to integrates parallel descriptions according to their semantic distances, and to answer shape-related species identification queries. From this highly specialised domain, we learn a set of more general methodological rules, which could be useful in other domains.


Leaf Shape Information Integration Shape Description Semantic Distance Complex Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Stuckenschmidt, H., van Harmelen, F.: Information Sharing on the Semantic Web. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Ceusters, W., Smith, B., Fielding, J.M.: LinkSuiteTM: Formally robust ontology-based data and information integration. In: Rahm, E. (ed.) DILS 2004. LNCS (LNBI), vol. 2994, pp. 124–139. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Huebner, S.: Ontology-based integration of information - a survey of existing approaches. In: Proceedings of the IJCAI 2001 Workshop: Ontologies and Information Sharing, Seattle, WA, pp. 108–117 (2001)Google Scholar
  4. 4.
    Wang, S., Pan, J.Z.: Ontology-based representation and query colour descriptions from botanical documents. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3761, pp. 1279–1295. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Gielis, J.: A generic geometric transformation that unifies a wide range of natural and abstract shapes. American Journal of Botany 90, 333–338 (2003)CrossRefGoogle Scholar
  6. 6.
    Pan, J.Z., Horrocks, I.: OWL-Eu: Adding Customised Datatypes into OWL. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532. Springer, Heidelberg (2005), An extended and revised version is published in the Journal of Web Semantics 4(1), 29–39 (2005)Google Scholar
  7. 7.
    Pan, J.Z.: Description Logics: Reasoning Support for the Semantic Web. PhD thesis, School of Computer Science, The University of Manchester (2004)Google Scholar
  8. 8.
    Pan, J.Z.: A Flexible Ontology Reasoning Architecture for the Semantic Web. IEEE Transactions on Knowledge and Data Engineering, Special Issue on the Semantic Web (to appear, 2006)Google Scholar
  9. 9.
    Marr, D., Nishihara, H.: Representation and recognition of the spatial organization of three-dimensional shapes. In: Proceedings of the Royal Society B 200, London, pp. 269–294 (1978)Google Scholar
  10. 10.
    Pentland, A.: Perceptual organization and the representation of natural form. Artificial Intelligence 28, 293–331 (1986)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Thompson, D.: On growth and form. Cambridge University Press, London (1917)Google Scholar
  12. 12.
    Adams, D.C., Rohlf, F.J., Slice, D.E.: Geometric morphometrics: Ten years of progress following the “revolution”. Italian Journal of Zoology 71, 5–16 (2004)CrossRefGoogle Scholar
  13. 13.
    Stearn, W.T.: Botanical Latin: history, grammar, syntax, terminology and vocabulary. David and Charles, Newton Abbot (1973)Google Scholar
  14. 14.
    Gärdenfors, P.: Conceptual Spaces: the geometry of thought. MIT Press, Cambridge (2000)Google Scholar
  15. 15.
    Clapham, A., Tutin, T., Moore, D.: Flora of the British Isles. Cambridge University Press, Cambridge (1987)Google Scholar
  16. 16.
    Stace, C.: New Flora of the British Isles. Cambridge University Press, Cambridge (1997)Google Scholar
  17. 17.
    Tutin, T.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Moore, D.M. (eds.): Flora Europaea. Cambridge University Press, Cambridge (1993)Google Scholar
  18. 18.
    Rose, F.: The Wild Flower Key: British Isles and North West Europe. Frederick Warne (1981)Google Scholar
  19. 19.
    Fernald, M.: Gray’s Manual of Botany. American Book Company, New York (1950)Google Scholar
  20. 20.
    Dik, S.C.: Coordination: Its implications for the theory of general linguistics. North-Holland, Amsterdam (1968)Google Scholar
  21. 21.
    Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F. (eds.): L.A.S.: OWL Web Ontology Language Reference (2004),
  22. 22.
    Carroll, J.J., Pan, J.Z.: XML Schema Datatypes in RDF and OWL. Technical report, W3C Semantic Web Best Practices and Development Group, W3C Working Group Note (2006),
  23. 23.
    Lydon, S.J., Wood, M.M., Huxley, R., Sutton, D.: Data patterns in multiple botanical descriptions: implications for automatic processing of legacy data. Systematics and Biodiversity, 151–157 (2003)Google Scholar
  24. 24.
    Goble, C., Stevens, R., Ng, G., Bechhofer, S., Paton, N., Baker, P., Peim, M., Brass, A.: Transparent access to multiple bioinformatics information sources. IBM Systems Journal Special issue on deep computing for the life sciences 40, 532–552 (2001)Google Scholar
  25. 25.
    Williams, D., Poulovassilis, A.: Combining data integration with natural language technology for the semantic web. In: Proceedings of Workshop on Human Language Technology for the Semantic Web and Web Services, at ISWC 2003 (2003)Google Scholar
  26. 26.
    Calvanese, D., Giuseppe, D.G., Lenzerini, M.: Description logics for information integration. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS, vol. 2408, pp. 41–60. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  27. 27.
    Maier, A., Schnurr, H.P., Sure, Y.: Ontology-based information integration in the automotive industry. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 897–912. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  28. 28.
    Ferrucci, D., Lally, A.: UIMA: an architectural approach to unstructured information processing in the corporate research environment. Journal of Natural Language Engineering 10, 327–348 (2004)CrossRefGoogle Scholar
  29. 29.
    Osgood, C., Suci, G., Tannenbaum, P.: The Measurement of Meaning. University of Illinois Press, Urbana (1957)Google Scholar
  30. 30.
    Dowty, D.R.: Word Meaning and Montague Grammar. D. Reidel Publishing Co., Dordrecht (1979)Google Scholar
  31. 31.
    Lakoff, G.: Women, Fire, and Dangerous Things: What Categories Reveal about the Mind. University of Chicago Press (1987)Google Scholar
  32. 32.
    Schwering, A.: Hybrid models for semantics similarity measurement. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS, vol. 3761, pp. 1449–1465. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  33. 33.
    Anyanwu, K., Maduko, A., Sheth, A.P.: Semrank: ranking complex relationship search results on the semantic web. In: Ellis, A., Hagino, T. (eds.) WWW, pp. 117–127. ACM, New York (2005)Google Scholar
  34. 34.
    Li, L., Horrocks, I.: A Software Framework For Matchmaking Based on Semantic Web Technology. In: Proceedings of the Twelfth International World Wide Web Conference (WWW 2003), pp. 331–339. ACM, New York (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shenghui Wang
    • 1
  • Jeff Z. Pan
    • 2
  1. 1.School of Computer ScienceUniversity of ManchesterUK
  2. 2.Department of Computing ScienceUniversity of AberdeenUK

Personalised recommendations