Advertisement

The Summary Abox: Cutting Ontologies Down to Size

  • Achille Fokoue
  • Aaron Kershenbaum
  • Li Ma
  • Edith Schonberg
  • Kavitha Srinivas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4273)

Abstract

Reasoning on OWL ontologies is known to be intractable in the worst-case, which is a serious problem because in practice, most OWL ontologies have large Aboxes, i.e., numerous assertions about individuals and their relations. We propose a technique that uses a summary of the ontology (summary Abox) to reduce reasoning to a small subset of the original Abox, and prove that our techniques are sound and complete. We demonstrate the scalability of this technique for consistency detection in 4 ontologies, the largest of which has 6.5 million role assertions.

References

  1. 1.
    Horrocks, I., Tessaris, S.: Querying the semantic web: a formal approach. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 177–191. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Donini, F.: Complexity of reasoning. In: Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.) Description Logic Handbook, pp. 101–141. Cambridge University Press, Cambridge (2002)Google Scholar
  3. 3.
    Hustadt, U., Motik, B., Sattler, U.: Reducing shiq description logic to disjunctive datalog programs. In: Proc. of 9th Intl. Conf. on Knowledge Representation and Reasoning (KR 2004), pp. 152–162 (2004)Google Scholar
  4. 4.
    Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description logic SHIQ. In: Proc. of 17th Int. Conf. on Automated Deduction, pp. 482–496 (2000)Google Scholar
  5. 5.
    Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E., Srinivas, K.: Scalable reasoning: Cutting ontologies down to size (2006), http://www.research.ibm.com/iaa/techReport.pdf
  6. 6.
    Horrocks, I., Tobies, S.: Reasoning with axioms: Theory and practice. In: KR, pp. 285–296 (2000)Google Scholar
  7. 7.
    Guo, Y., Pan, Z., Heflin, J.: An evaluation of knowledge base systems for large OWL datasets. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 274–288. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y.: Towards a complete OWL ontology benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 124–139. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Welty, C., Murdock, J.W.: Towards knowledge acquisition from information extraction. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 709–722. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Sirin, E., Parsia, B.: Pellet: An owl dl reasoner. In: Description Logics (2004)Google Scholar
  11. 11.
    Haarslev, V., Moller, R.: RACER system description. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 701–705. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Bechhofer, S., Horrocks, I., Turi, D.: The OWL instance store: System description. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 177–181. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Tessaris, S., Horrocks, I.: Abox satisfiability reduced to terminological reasoning in expressive description logics. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS, vol. 2514, pp. 435–449. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Haarslev, V., Moller, R.: An empirical evaluation of optimization strategies for abox reasoning in expressive description logics. In: Proc. of the International Workshop on Description Logics, pp. 115–199 (1999)Google Scholar
  15. 15.
    Grau, B.C., Parsia, B., Sirin, E., Kalyanpur, A.: Automatic partitioning of owl ontologies using e-connections. In: Description Logics (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Achille Fokoue
    • 1
  • Aaron Kershenbaum
    • 1
  • Li Ma
    • 2
  • Edith Schonberg
    • 1
  • Kavitha Srinivas
    • 1
  1. 1.IBM Watson Research CenterYorktown HeightsUSA
  2. 2.IBM China Research LabBeijingChina

Personalised recommendations