Advertisement

Spectrum of a Pot for DNA Complexes

  • Nataša Jonoska
  • Gregory L. McColm
  • Ana Staninska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4287)

Abstract

Given a set of flexible branched junction DNA molecules (building blocks) with sticky ends we consider the question of determining the proper stoichiometry such that all sticky ends could end up connected. The idea is to determine the proper proportion (spectrum) of each type of molecules present, which in general is not uniform. We classify the pot in three classes: weakly satisfiable, satisfiable and strongly satisfiable according to possible components that assemble in complete complexes. This classification is characterized through the spectrum of the pot, which can be computed in PTIME using the standard Gauss-Jordan elimination method.

Keywords

American Chemical Society Tile Type Complete Complex Junction Molecule Sierpinski Triangle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.M., Cheng, Q., Goel, A., Huang, M.-D., Kempe, D., de Espanes, P.M., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In: STOC 2002 Proceedings, Montreal Quebec, Canada (2002)Google Scholar
  2. 2.
    Adleman, L.M., Kari, J., Kari, L., Reishus, D.: On the decidability of self-assembly of infinite ribons. In: Proceedings of FOCS 2002, IEEE Symposium on Foundations of Computer Science, Washington, pp. 530–537 (2002)Google Scholar
  3. 3.
    Chen, J.H., Seeman, N.C.: Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350 (1991)Google Scholar
  4. 4.
    Goodman, R.P., Schaap, I.A.T., Tardin, C.F., Erben, C.M., Berry, R.M., Schmidt, C.F., Turberfield, A.J.: Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication. Science 310 (2005)Google Scholar
  5. 5.
    Jonoska, N., Karl, S., Saito, M.: Three dimensional DNA structures in computing. BioSystems 52, 143–153 (1999)CrossRefGoogle Scholar
  6. 6.
    Jonoska, N., Sa-Ardyen, P., Seeman, N.C.: Computation by self-assembly of DNA graphs. Genetic Programming and Evolvable Machines 4, 123–137 (2003)CrossRefGoogle Scholar
  7. 7.
    Jonoska, N., McColm, G.L., Staninska, A.: Expectation and Variance of Self-assembled Graph Structures. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 144–157. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Jonoska, N., McColm, G.L.: A Computational Model for Self-assembling Flexible Tiles. In: Calude, C.S., et al. (eds.) UC 2005. LNCS, vol. 3699, pp. 142–156. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Kao, M.-Y., Ramachandran, V.: DNA Self-Assembly For Constructing 3D Boxes. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 429–440. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Kurtz, S.A., Mahaney, S.R., Royer, J.S., Simon, J.: Active transport in biological computing. In: Landweber, L., Baum, E. (eds.) DIMACS, vol. 44, pp. 171–181 (1997)Google Scholar
  11. 11.
    Mao, C., Sun, W., Seeman, N.C.: Designed two-dimensional DNA holliday junction arrays visualized by atomic force microscopy. Journal of American Chemical Society 121(23), 5437–5443 (1999)CrossRefGoogle Scholar
  12. 12.
    Qi, J., Li, X., Yang, X., Seeman, N.C.: Ligation of triangles built from bulged 3-arm DNA branched junctions. Journal of American Chemical Society 120, 6121–6130 (1996)CrossRefGoogle Scholar
  13. 13.
    Reif, J.H., Sahu, S., Yin, P.: A Self-assembly Model of Time-Dependent Glue Strength. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 290–304. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Rothemund, P.W.K., Papadakis, P., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoD Biology 2(12), e424 (2004)CrossRefGoogle Scholar
  15. 15.
    Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares. In: Proceedings of 33rd ACM meeting STOC 2001, Portland, Oregon, May 21-23, pp. 459–468 (2001)Google Scholar
  16. 16.
    Sa-Ardyen, P., Jonoska, N., Seeman, N.C.: Self-assembly of graphs represented by DNA helix axis topology. Journal of American Chemical Society 126(21), 6648–6657 (2004)CrossRefGoogle Scholar
  17. 17.
    Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-kilobase single stranded DNA folds into a nanoscale octahedron. Nature 427, 618–621 (2004)CrossRefGoogle Scholar
  18. 18.
    Zhang, Y., Seeman, N.C.: The construction of a DNA truncated octahedron. Journal of American Chemical Society 116(5), 1661–1669 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nataša Jonoska
    • 1
  • Gregory L. McColm
    • 1
  • Ana Staninska
    • 1
  1. 1.Department of MathematicsUniversity of South Florida 

Personalised recommendations