Advertisement

MethyLogic: Implementation of Boolean Logic Using DNA Methylation

  • Nevenka Dimitrova
  • Susannah Gal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4287)

Abstract

The MethyLogic method performs flexible and reversible modification of DNA in order to establish the logical value of true or false for a set of clauses. It combines both the biological meaning and experimental procedure with the logical implementation of the basic Boolean operators: OR, AND, and NOT. The original feature of methylation logic, MethyLogic, is the use of the reversibility of DNA methylation of cytosine and adenine. Logic variables can be negated by reversing the DNA methylation status. We introduce four implementation scenarios: three of them use methyl-sensitive restriction enzymes and the fourth uses methyl-binding proteins. Encoding can use either single or double-stranded DNA. In addition, we show how to solve a three variable SAT problem and how to implement a logic circuit.

Keywords

Boolean Logic Logical Operator Logic Circuit Logical Variable Bisulfite Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bird, A.: DNA methylation patterns and epigenetic memory. Genes Dev 16(1), 6–21 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Rollins, R.A., et al.: Large-scale structure of genomic methylation patterns. Genome Research 16(2), 157–163 (2006)CrossRefGoogle Scholar
  3. 3.
    Jeltsch, A.: Beyond Watson and Crick: DNA methylation and molecular enzymology of DNA methyltransferases. ChemBioChem 3(4), 274–293 (2002)CrossRefGoogle Scholar
  4. 4.
    Esteller, M., et al.: Cancer epigenetics and methylation. Science 297(5588), 1807–1808 (2002)CrossRefGoogle Scholar
  5. 5.
    Conrad, M.: Information processing in molecular systems. Currents in Modern Biology 5, 1–14 (1972)Google Scholar
  6. 6.
    Livstone, M.S., van Noort, D., Landweber, L.F.: Molecular computing revisited: a Moore’s Law? Trends Biotechnol 21(3), 98–101 (2003)CrossRefGoogle Scholar
  7. 7.
    Head, T.: One Mathematician’s Tour from Biology into Computing and Back to Life (submitted, 2006)Google Scholar
  8. 8.
    Lederman, H., et al.: Deoxyribozyme-Based Three-Input Logic Gates and Construction of a Molecular Full Adder. Biochemistry 45(4), 1194–1199 (2006)CrossRefGoogle Scholar
  9. 9.
    Margolin, A.A., Stojanovic, M.N.: Boolean calculations made easy (for ribozymes). Nat Biotechnol 23(11), 1374–1376 (2005)CrossRefGoogle Scholar
  10. 10.
    Liu, Q., et al.: DNA computing on surfaces. Nature 413, 175–179 (2000)Google Scholar
  11. 11.
    Su, X., Smith, L.M.: Demonstration of a universal surface DNA computer. Nucleic Acids Res 32(10), 3115–3123 (2004)CrossRefGoogle Scholar
  12. 12.
    Head, T., et al.: Aqueous solutions of algorithmic problems: emphasizing knights on a 3X3. In: Jonoska, N., Seeman, N.C. (eds.) DNA Computing - 7th International Workshop on DNA-Based Computers, pp. 191–202. Springer, Heidelberg (2002)Google Scholar
  13. 13.
    Hatada, I., et al.: Genome-wide profiling of promoter methylation in human. Oncogene, e-published January 9 (2006)Google Scholar
  14. 14.
    Head, T., et al.: Aqueous computing: a survey with an invitation to participate. J. Computer Science & Technology 17, 672–681 (2002)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Benenson, Y., et al.: DNA molecule provides a computing machine with both data and fuel. Proc Natl Acad Sci U S A 100(5), 2191–2196 (2003)CrossRefGoogle Scholar
  16. 16.
    Gal, S., Head, T.: Exploring Methylation as a Tool for DNA Computing. In: DNA11: Confer-ence on DNA based computers, London, Ontario (2005)Google Scholar
  17. 17.
    Head, T.: Writing by Methylation Proposed for Aqueous Computing. In: Martín-Vide, C., Mitrana, V. (eds.) Where Mathematics, Computer Science, Linguistics and Biology Meet, pp. 353–360. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  18. 18.
    Marinus, M.G., Morris, N.R.: Isolation of deoxyribonucleic acid methylase mutants of Escherichia coli K-12. J. Bacteriol 114(3), 1143–1150 (1973)Google Scholar
  19. 19.
    Geier, G.E., Modrich, P.: Recognition sequence of the dam methylase of Escherichia coli K12 and mode of cleavage of Dpn I endonuclease. J. Biol. Chem. 254(4), 1408–1413 (1979)Google Scholar
  20. 20.
    Pradhan, S., et al.: Recombinant human DNA (cytosine-5) methyltransferase. I. Expression, purification, and comparison of de novo and maintenance methylation. J. Biol. Chem. 276(46), 33002–33010 (1999)CrossRefGoogle Scholar
  21. 21.
    Bowen, N.J., Palmer, M.B., Wade, P.A.: Chromosomal regulation by MeCP2: structural and enzymatic considerations. Cell Mol. Life Sci. 61(17), 2163–2167 (2004)CrossRefGoogle Scholar
  22. 22.
    Khan, R., et al.: Human methylated DNA-binding protein. Determinants of a pBR322 recogni-tion site. J. Biol. Chem. 263(28), 14374–14383 (1988)Google Scholar
  23. 23.
    Shapiro, R., Servis, R.E., Welcher, M.: Reactions of uracil and cytosine derivatives with sodium bisulfite:a specific deamination method. J. Am. Chem. Soc. 92, 422–424 (1970)CrossRefGoogle Scholar
  24. 24.
    Hayatsu, H., Wataya, Y., Kai, K.: The addition of sodium bisulfite to uracil and to cytosine. J. Am. Chem. Soc. 92, 724–726 (1970)CrossRefGoogle Scholar
  25. 25.
    Fuhrmann, M., et al.: Removal of mismatched bases from synthetic genes by enzymatic mis-match cleavage. Nucleic Acids Res. 33(6), e58 (2005)CrossRefGoogle Scholar
  26. 26.
    Till, B.J., et al.: Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res. 32(8), 2632–2641 (2004)CrossRefGoogle Scholar
  27. 27.
    Kimura, N., et al.: Methylation profiles of genes utilizing newly developed CpG island methylation microarray on colorectal cancer patients. Nucleic Acids Research 33(5), e46 (2005)CrossRefGoogle Scholar
  28. 28.
    Fatemi, M., et al.: Footprinting of mammalian promoters: use of a CpG DNA methyltransferase revealing nucleosome positions at a single molecule level. Nucleic Acids Research 33(20), e176 (2005)CrossRefGoogle Scholar
  29. 29.
    Sutherland, E., Coe, L., Raleigh, E.A.: McrBC: a multisubunit GTP-dependent restriction endonuclease. J Mol. Biol. 225(2), 327–348 (1992)CrossRefGoogle Scholar
  30. 30.
    Strichman-Almashanu, L.Z., et al.: A Genome-Wide Screen for Normally Methylated Human CpG Islands That Can Identify Novel Imprinted Genes. Genome Research 12, 543–554 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nevenka Dimitrova
    • 1
  • Susannah Gal
    • 1
    • 2
  1. 1.Philips ResearchBriarcliff ManorUSA
  2. 2.Department of Biological SciencesBinghamton UniversityBinghamtonUSA

Personalised recommendations