P Systems with Active Membranes Characterize PSPACE

  • Petr Sosík
  • Alfonso Rodríguez-Patón
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4287)


A P system is a natural computing model inspired by information processes in cells and a control role of cellular membranes. We show that uniform families of P systems with active membranes are able to solve, in polynomial time, exactly the class of decisional problems PSPACE. Similar results were achieved also with other models of bio-inspired computers, such as DNA computing. Together they suggest that PSPACE naturally characterizes the computational potential of biological information processing.


Turing Machine Active Membrane Recursive Call Membrane Computing Applicable Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Păun, G.: Computing with Membranes. J. Comput. System Sci. 61, 108–143 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Păun, G.: Membrane Computing: an Introduction. Springer, Berlin (2002)MATHGoogle Scholar
  3. 3.
    The P Systems Web Page at
  4. 4.
    Păun, G.: P systems with active membranes: attacking NP complete problems. J. Automata, Languages and Combinatorics 6(1), 75–90 (2001)MATHGoogle Scholar
  5. 5.
    Alhazov, A., Freund, R., Riscos-Núñez, A.: One and two polarizations, membrane creation and objects complexity in P systems. In: Ciobanu, G., Păun, G. (eds.) First Int. Workshop on Theory and Application of P Systems (TAPS), Timişoara, Romania, pp. 9–18 (2005)Google Scholar
  6. 6.
    Alhazov, A., Martin-Vide, C., Pan, L.: Solving a PSPACE-complete problem by P systems with restricted active membranes. Fundamenta Informaticae 58(2), 67–77 (2003)MathSciNetGoogle Scholar
  7. 7.
    Ciobanu, G., Pan, L., Păun, G., Pérez-Jiménez, M.J.: P Systems with Minimal Parallelism (submitted)Google Scholar
  8. 8.
    Pérez–Jiménez, M.J., Gutiérrez–Naranjo, M.A., Riscos–Núñez, A., Romero–Campero, F.J.: On the Power of Dissolution in P Systems with Active Membranes. In: Freund, R., et al. (eds.) WMC 2005. LNCS, vol. 3850, pp. 224–240. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Campero, F.J.: Characterizing standard tractability by cell-like membrane systems. In: Subramanian, K.G. (ed.) Formal Models, Languages and Applications, World Scientific, Singapore (in press, 2006)Google Scholar
  10. 10.
    Pérez-Jiménez, M.J., Jiménez, A.R., Sancho-Caparrini, F.: Complexity classes in models of cellular computing with membranes. Natural Computing 2, 265–285 (2003)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Sosík, P.: The computational power of cell division: beating down parallel computers? Natural Computing 2–3, 287–298 (2003)CrossRefGoogle Scholar
  12. 12.
    Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) Unconventional Models of Computation, pp. 289–301. Springer, London (2000)Google Scholar
  13. 13.
    Balcazar, J.L., Diaz, J., Gabarro, J.: Structural Complexity II. Springer, Berlin (1991)Google Scholar
  14. 14.
    Beaver, D.: A universal molecular computer. In: Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers. DIMACS: Series in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society, vol. 27, pp. 29–36 (1995)Google Scholar
  15. 15.
    Dantsin, E., Wolpert, A.: A robust DNA computation model that captures PSPACE. Int. J. Foundations Comp. Sci. 14(5), 933–951 (2003)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Pudlák, P.: Complexity theory and genetics: The computational power of crossing-over. Information and Computation 171, 201–223 (2001)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Petr Sosík
    • 1
    • 2
  • Alfonso Rodríguez-Patón
    • 1
  1. 1.Facultad de InformáticaUniversidad Politécnica de Madrid – UPMMadridSpain
  2. 2.Institute of Computer ScienceSilesian UniversityOpavaCzech Republic

Personalised recommendations