Advertisement

Abstraction Layers for Scalable Microfluidic Biocomputers

  • William Thies
  • John Paul Urbanski
  • Todd Thorsen
  • Saman Amarasinghe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4287)

Abstract

Microfluidic devices are emerging as an attractive technology for automatically orchestrating the reactions needed in a biological computer. Thousands of microfluidic primitives have already been integrated on a single chip, and recent trends indicate that the hardware complexity is increasing at rates comparable to Moore’s Law. As in the case of silicon, it will be critical to develop abstraction layers—such as programming languages and Instruction Set Architectures (ISAs)—that decouple software development from changes in the underlying device technology.

Towards this end, this paper presents BioStream, a portable language for describing biology protocols, and the Fluidic ISA, a stable interface for microfluidic chip designers. A novel algorithm translates microfluidic mixing operations from the BioStream layer to the Fluidic ISA. To demonstrate the benefits of these abstraction layers, we build two microfluidic chips that can both execute BioStream code despite significant differences at the device level. We consider this to be an important step towards building scalable biological computers.

Keywords

Leaf Node Internal Node Microfluidic Chip Storage Cell Abstraction Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: Solution of a 20-variable 3-SAT problem on a DNA computer. Science 296 (2002)Google Scholar
  2. 2.
    Farfel, J., Stefanovic, D.: Towards practical biomolecular computers using microfluidic deoxyribozyme logic gate networks. In: DNA 11 (2005)Google Scholar
  3. 3.
    Gehani, A., Reif, J.: Micro flow bio-molecular computation. Biosystems 52 (1999)Google Scholar
  4. 4.
    Grover, W.H., Mathies, R.A.: An integrated microfluidic processor for single nucleotide polymorphism-based DNA computing. Lab on a Chip 5 (2005)Google Scholar
  5. 5.
    Livstone, M.S., Weiss, R., Landweber, L.F.: Automated design and programming of a microfluidic DNA computer. Natural Computing (2006)Google Scholar
  6. 6.
    McCaskill, J.S.: Optically programming DNA computing in microflow reactors. BioSystems 59 (2001)Google Scholar
  7. 7.
    Somei, K., Kaneda, S., Fujii, T., Murata, S.: A microfluidic device for DNA tile self-assembly. In: DNA 11 (2005)Google Scholar
  8. 8.
    van Noort, D.: A programmable molecular computer in microreactors. In: DNA 11 (2005)Google Scholar
  9. 9.
    van Noort, D., Gast, F.U., McCaskill, J.S.: DNA computing in microreactors. In: DNA 8 (2002)Google Scholar
  10. 10.
    van Noort, D., Zhang, B.T.: PDMS valves in DNA computers. In: SPIE International Symposium on Smart Materials, Nano, and Micro-Smart Systems (2004)Google Scholar
  11. 11.
    Breslauer, D.N., Lee, P.J., Lee, L.P.: Microfluidics-based systems biology. Molecular BioSystems 2 (2006)Google Scholar
  12. 12.
    Erickson, D., Li, D.: Integrated microfluidic devices. Anal. Chim. Acta 507 (2004)Google Scholar
  13. 13.
    Sia, S.K., Whitesides, G.M.: Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24 (2003)Google Scholar
  14. 14.
    Thorsen, T., Maerkl, S., Quake, S.: Microfluidic large scale integration. Science 298 (2002)Google Scholar
  15. 15.
    Hong, J.W., Quake, S.R.: Integrated nanoliter systems. Nature BioTechnology 21(10) (2003)Google Scholar
  16. 16.
    Allan, L., Morrice, N., Brady, S., Magee, G., Pathak, S., Clarke, P.: Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nature Cell Biology 5 (2003)Google Scholar
  17. 17.
    Urbanski, J.P., Thies, W., Rhodes, C., Amarasinghe, S., Thorsen, T.: Digital microfluidics using soft lithography. Lab on a Chip 6 (2006)Google Scholar
  18. 18.
    Chou, H., Unger, M., Quake, S.: A microfabricated rotary pump. Biomedical Microdevices 3 (2001)Google Scholar
  19. 19.
    Faulhammer, D., Cukras, A.R., Lipton, R.J., Landweber, L.F.: Molecular computation: RNA solutions to chess problems. PNAS 97(4) (2000)Google Scholar
  20. 20.
    Ouyang, Q., Kaplan, P.D., Liu, S., Libchaber, A.: DNA solution of the maximal clique problem. Science 278 (1997)Google Scholar
  21. 21.
    Yamamoto, M., Matsuura, N., Shiba, T., Kawazoe, Y., Ohuchi, A.: Solutions of shortest path problems by concentration control. In: DNA 7 (2002)Google Scholar
  22. 22.
    Paik, P., Pamula, V., Fair, R.: Rapid droplet mixers for digitial microfluidic systems. Lab on a Chip 3 (2003)Google Scholar
  23. 23.
    Thies, W., Urbanski, J.P., Thorsen, T., Amarasinghe, S.: Abstraction layers for scalable microfluidic biocomputers (Extended version). Technical Report MIT-CSAIL-TR-2006-034, MIT (2006), http://hdl.handle.net/1721.1/32543
  24. 24.
    Gascoyne, P.R.C., Vykoukal, J.V., Schwartz, J.A., Anderson, T.J., Vykoukal, D.M., Current, K.W., McConaghy, C., Becker, F.F., Andrews, C.: Dielectrophoresis-based programmable fluidic processors. Lab on a Chip 4 (2004)Google Scholar
  25. 25.
    Su, F., Chakrabarty, K.: Architectural-level synthesis of digital microfluidics-based biochips. In: ICCAD (2004)Google Scholar
  26. 26.
    Su, F., Chakrabarty, K.: Unified high-level synthesis and module placement for defect-tolerant microfluidic biochips. In: DAC (2005)Google Scholar
  27. 27.
    King, R.D., Whelan, K.E., Jones, F.M., Reiser, P.G.K., Bryant, C.H., Muggleton, S.H., Kell, D.B., Oliver, S.G.: Functional genomic hypothesis generation and experimentation by a robot scientist. Nature 427 (2004)Google Scholar
  28. 28.
    Gu, W., Zhu, X., Futai, N., Cho, B.S., Takayama, S.: Computerized microfluidic cell culture using elastomeric channels and Braille displays. PNAS 101(45) (2004)Google Scholar
  29. 29.
    Johnson, C.: Automating the DNA Computer to Solve n-Variable 3-SAT Problems. In: DNA 12 (2006)Google Scholar
  30. 30.
    Dertinger, S.K.W., Chiu, D.T., Jeon, N.L., Whitesides, G.M.: Generation of gradients having complex shapes using microfluidic networks. Anal. Chem. 73 (2001)Google Scholar
  31. 31.
    Neils, C., Tyree, Z., Finlayson, B., Folch, A.: Combinatorial mixing of microfluidic streams. Lab on a Chip 4 (2004)Google Scholar
  32. 32.
    Lin, F., Saadi, W., Rhee, S.W., Wang, S.J., Mittalb, S., Jeon, N.L.: Generation of dynamic temporal and spatial concentration gradients using microfluidic devices. Lab on a Chip 4 (2004)Google Scholar
  33. 33.
    Pollack, M., Fair, R., Shenderov, A.: Electrowetting-based actuation of liquid droplets for microfluidic applications. Applied Physics Letters 77(11) (2000)Google Scholar
  34. 34.
    Ren, H., Srinivasan, V., Fair, R.: Design and testing of an interpolating mixing architecture for electrowetting-based droplet-on-chip chemical dilution. Transducers (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • William Thies
    • 1
  • John Paul Urbanski
    • 2
  • Todd Thorsen
    • 2
  • Saman Amarasinghe
    • 1
  1. 1.Computer Science and Artificial Intelligence Laboratory 
  2. 2.Hatsopoulos Microfluids LaboratoryMassachusetts Institute of Technology 

Personalised recommendations