Capabilities and Limits of Compact Error Resilience Methods for Algorithmic Self-assembly in Two and Three Dimensions

  • Sudheer Sahu
  • John H. Reif
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4287)


Winfree’s pioneering work led the foundations in the area of error-reduction in algorithmic self-assembly[26], but the construction resulted in increase of the size of assembly. Reif et. al. contributed further in this area with compact error-resilient schemes [15] that maintained the original size of the assemblies, but required certain restrictions on the Boolean functions to be used in the algorithmic self-assembly. It is a critical challenge to improve these compact error resilient schemes to incorporate arbitrary Boolean functions, and to determine how far these prior results can be extended under different degrees of restrictions on the Boolean functions. In this work we present a considerably more complete theory of compact error-resilient schemes for algorithmic self-assembly in two and three dimensions. First we consider two-dimensional algorithmic self-assembly. We present an error correction scheme for reduction of errors from ε to ε 2 for arbitrary Boolean functions in two dimensional algorithmic self-assembly. Then we characterize the class of Boolean functions for which the error reduction can be done from ε to ε 3, and present an error correction scheme that achieves this reduction. Then we prove ultimate limits on certain classes of compact error resilient schemes: in particular we show that they can not provide reduction of errors from ε to ε 4 is for any Boolean functions. Further, we develop the first provable compact error resilience schemes for three dimensional tiling self-assemblies. We also extend the work of Winfree on self-healing in two-dimensional self-assembly[25] to obtain a self-healing tile-set for three-dimensional self-assembly.


Boolean Function Error Reduction Error Correction Scheme Arbitrary Boolean Function Error Resilient Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bondarenko, B.A.: Generalized Pascal Triangles and Pyramids, Their Fractals, Graphs and Applications. The Fibonacci Association (1993) Translated from Russion and edited by R.C. BollingerGoogle Scholar
  2. 2.
    Bowden, N., Terfort, A., Carbeck, J., Whitesides, G.M.: Self-assembly of mesoscale objects into ordered two-dimensional arrays. Science 276(11), 233–235 (1997)CrossRefGoogle Scholar
  3. 3.
    Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adleman, L.: DNA triangles and self-assembled hexagonal tilings. J. Am. Chem. Soc. 126, 13924–13925 (2004)CrossRefGoogle Scholar
  4. 4.
    Chen, H.L., Cheng, Q., Goel, A., Huang, M.D., de Espanes, P.M.: Invadable self-assembly: Combining robustness with efficiency. In: Proceedings of the 15th annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 890–899 (2004)Google Scholar
  5. 5.
    Chen, H.L., Goel, A.: Error free self-assembly using error prone tiles. DNA Based Computers 10, 274–283 (2004)Google Scholar
  6. 6.
    Clark, T.D., Ferrigno, R., Tien, J., Paul, K.E., Whitesides, G.M.: Template-directed self-assembly of 10-microm-sized hexagonal plates. J. Am. Chem. Soc. 124(19), 5419–5426 (2002)CrossRefGoogle Scholar
  7. 7.
    Jonoska, N., Karl, S.A., Saito, M.: Three dimensional DNA structures in computing. BioSystems 52, 143–153 (1999)CrossRefGoogle Scholar
  8. 8.
    LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000)CrossRefGoogle Scholar
  9. 9.
    Lagoudakis, M.G., LaBean, T.H.: 2-D DNA self-assembly for satisfiability. In: DNA Based Computers V. DIMACS, vol. 54, pp. 141–154. American Mathematical Society (2000)Google Scholar
  10. 10.
    Liu, D., Wang, M., Deng, Z., Walulu, R., Mao, C.: Tensegrity: Construction of rigid DNA triangles with flexible four-arm dna junctions. J. Am. Chem. Soc. 126, 2324–2325 (2004)CrossRefGoogle Scholar
  11. 11.
    Mao, C., Sun, W., Seeman, N.C.: Designed two-dimensional DNA holliday junction arrays visualized by atomic force microscopy. J. Am. Chem. Soc. 121, 5437–5443 (1999)CrossRefGoogle Scholar
  12. 12.
    Martin, B.R., Furnange, D.C., Jackson, T.N., Mallouk, T.E., Mayer, T.S.: Self-alignment of patterned wafers using capillary forces at a water-air interface. Advanced Functional Materials 11, 381–386 (2001)CrossRefGoogle Scholar
  13. 13.
    Paukstelis, P.J., Nowakowski, J., Birktoft, J.J., Seeman, N.C.: Crystal structure of a continuous three-dimensional DNA lattice. Chemistry and Biology 11, 1119–1126 (2004)CrossRefGoogle Scholar
  14. 14.
    Reif, J.H.: Local parallel biomolecular computation. In: Rubin, H., Wood, D.H. (eds.) DNA-Based Computers 3. DIMACS, vol. 48, pp. 217–254. American Mathematical Society (1999)Google Scholar
  15. 15.
    Reif, J.H., Sahu, S., Yin, P.: Compact error-resilient computational DNA tiling assemblies. In: Proc. 10th International Meeting on DNA Computing, pp. 248–260 (2004)Google Scholar
  16. 16.
    Rothemund, P.W.K.: Using lateral capillary forces to compute by self-assembly. Proc. Natl. Acad. Sci. USA 97(3), 984–989 (2000)CrossRefGoogle Scholar
  17. 17.
    Sahu, S., Reif, J.H.: Capabilities and limits of compact error resilience methods for algorithmic self-assembly in two and three dimensions. Technical Report CS-2006-04, Duke University (2006)Google Scholar
  18. 18.
    Schulman, R., Winfree, E.: Programmable control of nucleation for algorithmic self-assembly. In: DNA Based Computers 10, LNCS (2005)Google Scholar
  19. 19.
    Seeman, N.C.: DNA in a material world. Nature 421, 427–431 (2003)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. In: DNA Based Computers 10. LNCS, Springer, Heidelberg (2005)Google Scholar
  21. 21.
    Wang, H.: Proving theorems by pattern recognition ii. Bell Systems Technical Journal 40, 1–41 (1961)Google Scholar
  22. 22.
    Whitesides, G.M., Grzybowski, B.: Self-assembly at all scales. Science 295, 2242–2418 (2002)CrossRefGoogle Scholar
  23. 23.
    Winfree, E.: Complexity of restricted and unrestricted models of molecular computation. In: Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers 1. DIMACS, vol. 27, pp. 187–198. American Mathematical Society (1996)Google Scholar
  24. 24.
    Winfree, E.: Simulation of computing by self-assembly. Technical Report 1998.22, Caltech (1998)Google Scholar
  25. 25.
    Winfree, E.: Self-healing tile sets. In: Nanotechnology: Science and Computation. One-page abstract in proceedings of FNANO 2005 (preprint, 2006)Google Scholar
  26. 26.
    Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic self-assembly. In: Chen, J., Reif, J.H. (eds.) DAN 2003. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)CrossRefGoogle Scholar
  28. 28.
    Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of DNA: Some theory and experiments. In: Landweber, L.F., Baum, E.B. (eds.) DNA Based Computers II. DIMACS, vol. 44, pp. 191–213. American Mathematical Society (1999)Google Scholar
  29. 29.
    Xiong, X., Hanein, Y., Fang, J., Wang, Y., Wang, W., Schwartz, D., Bohringer, K.: Controlled multibatch self-assembly of microdevices. Journal Of Microelectromechanical Systems 12, 117–127 (2003)CrossRefGoogle Scholar
  30. 30.
    Yan, H., Feng, L., LaBean, T.H., Reif, J.H.: Parallel molecular computation of pair-wise xor using DNA string tile. J. Am. Chem. Soc. 125(47) (2003)Google Scholar
  31. 31.
    Yan, H., LaBean, T.H., Feng, L., Reif, J.H.: Directed nucleation assembly of DNA tile complexes for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA 100(14), 8103–8108 (2003)CrossRefGoogle Scholar
  32. 32.
    Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301(5641), 1882–1884 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sudheer Sahu
    • 1
  • John H. Reif
    • 1
  1. 1.Department of Computer ScienceDuke UniversityDurhamUSA

Personalised recommendations