Design and Simulation of Self-repairing DNA Lattices

  • Urmi Majumder
  • Sudheer Sahu
  • Thomas H. LaBean
  • John H. Reif
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4287)


Self-repair is essential to all living systems, providing the ability to remain functional in spite of gradual damage. In the context of self-assembly of self-repairing synthetic biomolecular systems, recently Winfree developed a method for transforming a set of DNA tiles into its self-healing counterpart at the cost of increasing the lattice area by a factor of 25. The overall focus of this paper, however, is to develop compact designs for self-repairing tiling assemblies with reasonable constraints on crystal growth. Specifically, we use a special class of DNA tiling designs called reversible tiling which when carefully designed can provide inherent self-repairing capabilities to patterned DNA lattices. We further note that we can transform any irreversible computational DNA tile set to its reversible counterpart and hence improve the self-repairability of the computational lattice. But doing the transform with an optimal number of tiles, is still an open question.


Cellular Automaton Zero Tile Reversible Computation Tiling Lattice Corner Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu, D., Wang, M.S., Deng, Z.X., Walulu, R., Mao, C.D.: J. Am. Chem. Soc.  126, 2324–2325 (2004)Google Scholar
  2. 2.
    LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000)CrossRefGoogle Scholar
  3. 3.
    Mao, C., Sun, W., Seeman, N.C.: J. Am. Chem. Soc.  121, 5437–5443 (1999)Google Scholar
  4. 4.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)CrossRefGoogle Scholar
  5. 5.
    Yan, H., LaBean, T.H., Feng, L., Reif, J.H.: Directed nucleation assembly of DNA tile complexes for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA 100(14), 8103–8108 (2003)CrossRefGoogle Scholar
  6. 6.
    Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301(5641), 1882–1884 (2003)CrossRefGoogle Scholar
  7. 7.
    Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic self-assembly. In: Chen, J., Reif, J.H. (eds.) DAN 2003. LNCS, vol. 2943, pp. 126–144. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Winfree, E.: Self Healing Tile Sets. Nanotechnology: Science and Computation, 3–21 (2006)Google Scholar
  9. 9.
    Reif, J.H., Sahu, S., Yin, P.: Compact error-resilient computational DNA tiling assemblies. In: Tenth International Meeting on DNA Based Computers (DNA10) (2004)Google Scholar
  10. 10.
    Chen, H.L., Goel, A.: Error Free Self-Assembly using error-prone tiles. DNA Computing 10 (2004)Google Scholar
  11. 11.
    Schulman, R., Winfree, E.: Controlling nucleation rate in algorithmic self-assembly. DNA Computing 10 (2004)Google Scholar
  12. 12.
    Hertzberg, R.: Deformation and Fracture Mechanics of Engineering Materials. John Wiley and Sons, NY (1996)Google Scholar
  13. 13.
    Winfree, E.: Simulations of Computing by Self-Assembly, Caltech CS Tech Report 1998.22Google Scholar
  14. 14.
    Winfree, E.: On the Computational Power of DNA Annealing and Ligation. DNA Based Computers, 199–221 (1996)Google Scholar
  15. 15.
    Cook, M., Rothemund, P.W.K., Winfree, E.: Self-Assembled circuit patterns. In: DNA Computers 9. LNCS, vol. 294, pp. 91–107. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Toffoli, T.: Reversible Computing, Automata, Languages and Programming, pp. 632–644. Springer, HeidelbergGoogle Scholar
  17. 17.
    Barish, R.D., Rothemund, P.W.K., Winfre, E.: Two Computational Primitives for Algorithmic Self-Assembly: Copying and Counting. Nano Letters 5(12), 2586–2592Google Scholar
  18. 18.
    Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic Self-Assembly of DNA Sierpinski Triangles. PLoS Biology 2(12), e424 (2004)CrossRefGoogle Scholar
  19. 19.
    Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)CrossRefGoogle Scholar
  20. 20.
    Park, S.H., Pistol, C., Ahn, S.J., Reif, J.H., Lebeck, A.R., Dwyer, C., LaBean, T.H.: Finite-size, Fully-Addressable DNA Tile Lattices Formed by Hierarchical Assembly Procedures. Angewandte Chemie 45, 735–739 (2006)CrossRefGoogle Scholar
  21. 21.
    Morita, K.: Reversible simulation of one-dimensional irreversible cellular automata. Theoret. Comput. Sci. 148, 157–163 (1995)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Hönberg, B., Olin, H.: Programmable Self-Assembly-Unique Structures and Bond Uniqueness. J. Comput. Theor. Nanosci. 3, 1–7 (2006)Google Scholar
  23. 23.
    Provot, X.: Deformation Constraints in a Mass Spring Model to Describe Rigid Cloth Behavior. In: Proc. Graphics Interface, vol. 95, pp. 147–154 (1995)Google Scholar
  24. 24.
    White, S.R., Sottos, N.R., Geubelle, P.H., Moore, J.S., Kessler, M.R., Sriram, S.R., Brown, E.N., Viswanathan, S.: Autonomic healing of polymer composites. Nature 409, 794–797 (2001)CrossRefGoogle Scholar
  25. 25.
    Pistol, C., Lebeck, A.R., Dwyer, C.: Design Automation for DNA Self-Assembled Nanostructures. In: Proceedings of the 43rd Design Automation Conference (DAC) (July 2006)Google Scholar
  26. 26.
    Park, S.-H., Yin, P., Liu, Y., Reif, J.H., LaBean, T.H., Yan, H.: Programmable DNA Self-assemblies for Nanoscale Organization of Ligands and Proteins. Nano Letters 5, 729–733 (2005)CrossRefGoogle Scholar
  27. 27.
    Sahu, S., Reif, J.: Capabilities and Limits of Compact Error Resilience Methods for Algorithmic Self-Assembly in Two and Three Dimensions. In: Twelfth International Meeting on DNA Based Computers (DNA12), Seoul, Korea, June 5-9 (2006)Google Scholar
  28. 28.
    Seeman, N.C.: J. Biomol. Struct. Dyn.  8, 573 (1990)Google Scholar
  29. 29.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Nature, 394 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Urmi Majumder
    • 1
  • Sudheer Sahu
    • 1
  • Thomas H. LaBean
    • 1
  • John H. Reif
    • 1
  1. 1.Department of Computer ScienceDuke UniversityDurhamUSA

Personalised recommendations