Interlinguas: A Classical Approach for the Semantic Web. A Practical Case

  • Jesús Cardeñosa
  • Carolina Gallardo
  • Luis Iraola
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4293)


An efficient use of the web will imply the ability to find not only documents but also specific pieces of information according to user’s query. Right now, this last possibility is not tackled by current information extraction or question answering systems, since it requires both a deeper semantic understanding of queries and contents along with deductive capabilities. In this paper, the authors propose the use of Interlinguas as a plausible approach to search and extract specific pieces of information from a document, given the semantic nature of Interlinguas and their support for deduction. More concretely, the authors describe the UNL Interlinguas from the representational point of view and illustrate its deductive capabilities by means of an example.


Natural Language Knowledge Representation Machine Translation Word Sense Unknown Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Quillian, M.R.: Semantic Memory. In: Minsky, M. (ed.) Semantic Information Processing, MIT press, Cambridge (1968)Google Scholar
  3. 3.
    Schank, R.C.: Conceptual Dependency: A Theory of Natural Language Understanding. Cognitive Psychology 3, 532–631 (1972)CrossRefGoogle Scholar
  4. 4.
    Uchida, H.: ATLAS-II: A machine translation system using conceptual structure as an Interlingua. In: Proceedings of the Second Machine Translation Summit, Tokyo (1989)Google Scholar
  5. 5.
    Muraki, K.: PIVOT: Two-phase machine translation system. In: Proceedings of the Second Machine Translation Summit, Tokyo (1989)Google Scholar
  6. 6.
    Nyberg, E.H., Mitamura, T.: The KANT system: fast, accurate, high-quality translation in practical domains. In: Proceedings of the 14th International Conference on Computational Linguistics (COLING 1992), Nantes, vol. 4, pp. 1254–1258 (1992)Google Scholar
  7. 7.
    Beale, S., Nirenburg, S.S., Mahesh, G.: Semantic Analysis in the Mikrokosmos Machine Translation Project. In: Proceedings of the Second Symposium on Natural Language Processing (SNLP 1995), Bangkok, Thailand (1995)Google Scholar
  8. 8.
    Dorr, B.: Machine Translation Divergences: A Formal Description and Proposed Solution. Computational Linguistics 20(4), 597–633 (1994)Google Scholar
  9. 9.
    Jackendoff, R.: Semantic Structures. Current Studies in Linguistics series. The MIT Press, Cambridge, Massachusetts (1990)Google Scholar
  10. 10.
    Montes, M., Gómez, A., López, A., Gelbukh, A.: Information retrieval with Conceptual Graph Matching. In: Ibrahim, M., Küng, J., Revell, N. (eds.) DEXA 2000. LNCS, vol. 1873, pp. 312–321. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Montes, M., Gómez, A., Gelbukh, A., López, A.: Text mining at Detail Level Using Conceptual Graphs. In: Priss, U., Corbett, D.R., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 122–136. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Uchida, H.: The Universal Networking Language Specifications, v3.3 (2004), available at
  13. 13.
    Boguslavsky, I., Cardeñosa, J., Gallardo, C., Iraola, L.: The UNL Initiative: An Overview. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 377–387. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Bateman, J.A., Henschel, R., Rinaldi, F.: The Generalized Upper Model 2.0 (1995),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jesús Cardeñosa
    • 1
  • Carolina Gallardo
    • 1
  • Luis Iraola
    • 1
  1. 1.Validation and Business Applications Research Group, Facultad de InformáticaUniversidad Politécnica de MadridMadridSpain

Personalised recommendations