Advertisement

First-Order Interval Type-1 Non-singleton Type-2 TSK Fuzzy Logic Systems

  • Gerardo M. Mendez
  • Luis Adolfo Leduc
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4293)

Abstract

This article presents the implementation of first-order interval type-1 non-singleton type-2 TSK fuzzy logic system (FLS). Using input-output data pairs during the forward pass of the training process, the interval type-1 non-singleton type-2 TSK FLS output is calculated and the consequent parameters are estimated by back-propagation (BP) method. In the backward pass, the error propagates backward, and the antecedent parameters are estimated also by back-propagation. The proposed interval type-1 non-singleton type-2 TSK FLS system was used to construct a fuzzy model capable of approximating the behaviour of the steel strip temperature as it is being rolled in an industrial Hot Strip Mill (HSM) and used to predict the transfer bar surface temperature at finishing Scale Breaker (SB) entry zone, being able to compensate for uncertain measurements that first-order interval singleton type-2 TSK FLS can not do.

Keywords

Membership Function Fuzzy Logic System Consequent Parameter Uncertain Measurement Finish Mill 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mendel, J.M.: Uncertain Rule Based Fuzzy Logic Systems: Introduction and New Directions. Prentice-Hall, Upper Saddle River (2001)MATHGoogle Scholar
  2. 2.
    Mendez, G., Cavazos, A., Leduc, L., Soto, R.: Hot Strip Mill Temperature Prediction Using Hybrid Learning Interval Singleton Type-2 FLS. In: Proceedings of the IASTED International Conference on Modeling and Simulation, Palm Springs, February 2003, pp. 380–385 (2003)Google Scholar
  3. 3.
    Mendez, G., Cavazos, A., Leduc, L., Soto, R.: Modeling of a Hot Strip Mill Temperature Using Hybrid Learning for Interval Type-1 and Type-2 Non-Singleton Type-2 FLS. In: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications, Benalmádena, Spain, September 2003, pp. 529–533 (2003)Google Scholar
  4. 4.
    Mendez, G., Juarez, I.: Orthogonal-Back Propagation Hybrid Learning Algorithm for Interval Type-1 Non-Singleton Type-2 Fuzzy Logic Systems. WSEAS Transactions on Systems 4(3) (March 2005), ISSN 1109-2777Google Scholar
  5. 5.
    Mendez, G., Castillo, O.: Interval Type-2 TSK Fuzzy Logic Systems Using Hybrid Learning Algorithm. In: FUZZ-IEEE 2005 The international Conference on Fuzzy Systems, Reno Nevada, USA, pp. 230–235 (2005)Google Scholar
  6. 6.
    Lee, D.Y., Cho, H.S.: Neural Network Approach to the Control of the Plate Width in Hot Plate Mills. In: International Joint Conference on Neural Networks, vol. 5, pp. 3391–3396 (1999)Google Scholar
  7. 7.
    Taylor, B.N., Kuyatt, C.E.: Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results, NIST Technical Note 1297 (September 1994)Google Scholar
  8. 8.
    Wang, L.-X.: Fuzzy Systems are Universal Approximators. In: Proceedings of the IEEE Conf. On Fuzzy Systems, San Diego, pp. 1163–1170 (1992)Google Scholar
  9. 9.
    Wang, L.-X., Mendel, J.M.: Back-Propagation Fuzzy Systems as Nonlinear Dynamic System Identifiers. In: Proceedings of the IEEE Conf. On Fuzzy Systems, San Diego, CA, March 1992, pp. 1409–1418 (1992)Google Scholar
  10. 10.
    Wang, L.-X.: Fuzzy Systems are Universal Approximators. In: Proceedings of the IEEE Conf. On Fuzzy Systems, San Diego, pp. 1163–1170 (1992)Google Scholar
  11. 11.
    Wang, L.-X.: A Course in Fuzzy Systems and Control. Prentice-Hall, Upper Saddle River (1997)MATHGoogle Scholar
  12. 12.
    Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, Upper Saddle River (1997)Google Scholar
  13. 13.
    Jang, J.-S.R., Sun, C.-T.: Neuro-Fuzzy Modeling and Control. The Proceedings of the IEEE 3, 378–406 (1995)CrossRefGoogle Scholar
  14. 14.
    Liang, Q.J., Mendel, J.M.: Interval type-2 fuzzy logic systems: Theory and design. Trans. Fuzzy Sist. 8, 535–550 (2000)CrossRefGoogle Scholar
  15. 15.
    John, R.I.: Embedded Interval Valued Type-2 Fuzzy Sets. IEEE Trans. Fuzzy Sist. (2002)Google Scholar
  16. 16.
    Mendel, J.M., John, R.I.: Type-2 Fuzzy Sets Made Simple. IEEE Transactions on Fuzzy Systems 10 (April 2002)Google Scholar
  17. 17.
    Mendel, J.M.: On the importance of interval sets in type-2 fuzzy logic systems. In: Proceedings of Joint 9th IFSA World Congress and 20th NAFIPS International Conference (2001)Google Scholar
  18. 18.
    Models, G.E.: Users reference, Vol. 1, Roanoke VA (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gerardo M. Mendez
    • 1
  • Luis Adolfo Leduc
    • 2
  1. 1.Department of Electronics and Electromechanical EngineeringInstituto Tecnológico de Nuevo LeónGuadalupeMéxico
  2. 2.Department of Process EngineeringHylsa, S.A. de C.V.MonterreyMéxico

Personalised recommendations