Skip to main content

Optimal Sampling for Feature Extraction in Iris Recognition Systems

  • Conference paper
Book cover MICAI 2006: Advances in Artificial Intelligence (MICAI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4293))

Included in the following conference series:

  • 994 Accesses

Abstract

Iris recognition is a method used to identify people based on the analysis of the eye iris. A typical iris recognition system is composed of four phases: (1) image acquisition and preprocessing, (2) iris localization and extraction, (3) iris features characterization, and (4) comparison and matching. A novel contribution in the step of characterization of iris features is introduced by using a Hammersley’s sampling algorithm and accumulated histograms. Histograms are computed with data coming from sampled sub-images of iris. The optimal number and dimensions of samples is obtained by the simulated annealing algorithm. For the last step, couples of accumulated histograms iris samples are compared and a decision of acceptance is taken based on an experimental threshold. We tested our ideas with UBIRIS database; for clean eye iris databases we got excellent results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Daugman, J.: How Iris Recognition Works. IEEE Transactions on Circuits and Systems for Video Technology 14(1), 21–30 (2004)

    Article  Google Scholar 

  2. Dobes, M., Machala, L., Tichasvky, P., Pospisil, J.: Human Eye Iris Recognition Using The Mutual Information. Optik (9), 399–404 (2004)

    Google Scholar 

  3. Efros, A., Leung, T.: Texture Synthesis by Non-Parametric Sampling. In: Proceedings of the 7th IEEE International Conference on Computer Vision, September 1999, vol. 2, pp. 1033–1038 (1999)

    Google Scholar 

  4. Hammersley, J.: Monte Carlo Methods for Solving Multivariate Problems. Annals of New York Academy of Science (86), 844–874 (1960)

    Google Scholar 

  5. Huang, Y., Luo, S., Chen, E.: An Efficient Iris Recognition System. In: Proceedings of the First International Conference on Machine Learning and Cybernetics, pp. 450–454 (2002)

    Google Scholar 

  6. Huang, J., Wang, Y., Tan, T., Cui, J.: A New Iris Segmentation Method for Iris Recognition System. In: Proceedings of the 17th International Conference on Pattern Recognition, pp. 554–557 (2004)

    Google Scholar 

  7. Independent Testing of Iris Recognition Technology - Final Report, International Biometric Group (May 2005)

    Google Scholar 

  8. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  9. Jain, A., Ross, A., Prabhakar, A.: An Introduction to Biometric Recognition. IEEE Transactions on Circuits and Systems for Video Technology 14(1), 4–20 (2004)

    Article  Google Scholar 

  10. Liang, L., Liu, C., Xu, Y., Guo, B., Shum, H.: Real-time Texture Synthesis by Patch-based Sampling. ACM Transactions on Graphics 20(3), 127–150 (2001)

    Article  Google Scholar 

  11. Ma, L., Wang, Y., Tan, T., Zhang, D.: Personal Identification Based on Iris Texture Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1519–1533 (2003)

    Article  Google Scholar 

  12. de Martin-Roche, D., Sanchez-Avila, C., Sanchez-Reillo, R.: Iris ecognition for Biometric Identification using dyadic wavelet transform zero-crossing. In: Proceedings of the IEEE 35th International Conference on Security Technology, pp. 272–277 (2001)

    Google Scholar 

  13. Negin, M., Chmielewski, T., Salganicoff, M., Camus, T., Cahn, U., Venetianer, P., Zhang, G.: An Iris Biometric System for Public and Personal Use. Computer 33(2), 70–75 (2000)

    Article  Google Scholar 

  14. Proenca, H., Alexandre, L.: UBIRIS: A Noisy Iris Image Database. In: Proceedings of the International Conference on Image Analysis and Processing, vol. 1, pp. 970–977 (2005)

    Google Scholar 

  15. Zhu, Y., Tan, T., Wang, Y.: Biometric Personal Identification Based on Iris Patterns. In: Proceedings of the 15th International Conference on Pattern Recognition, pp. 801–804 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castañon, L.E.G., de Oca, S.M., Morales-Menéndez, R. (2006). Optimal Sampling for Feature Extraction in Iris Recognition Systems. In: Gelbukh, A., Reyes-Garcia, C.A. (eds) MICAI 2006: Advances in Artificial Intelligence. MICAI 2006. Lecture Notes in Computer Science(), vol 4293. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11925231_77

Download citation

  • DOI: https://doi.org/10.1007/11925231_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-49026-5

  • Online ISBN: 978-3-540-49058-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics