Advertisement

Optimal Sampling for Feature Extraction in Iris Recognition Systems

  • Luis E. Garza Castañon
  • Saul Montes de Oca
  • Rubén Morales-Menéndez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4293)

Abstract

Iris recognition is a method used to identify people based on the analysis of the eye iris. A typical iris recognition system is composed of four phases: (1) image acquisition and preprocessing, (2) iris localization and extraction, (3) iris features characterization, and (4) comparison and matching. A novel contribution in the step of characterization of iris features is introduced by using a Hammersley’s sampling algorithm and accumulated histograms. Histograms are computed with data coming from sampled sub-images of iris. The optimal number and dimensions of samples is obtained by the simulated annealing algorithm. For the last step, couples of accumulated histograms iris samples are compared and a decision of acceptance is taken based on an experimental threshold. We tested our ideas with UBIRIS database; for clean eye iris databases we got excellent results.

Keywords

Simulated Annealing Algorithm Iris Image Texture Synthesis Iris Feature Iris Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Daugman, J.: How Iris Recognition Works. IEEE Transactions on Circuits and Systems for Video Technology 14(1), 21–30 (2004)CrossRefGoogle Scholar
  2. 2.
    Dobes, M., Machala, L., Tichasvky, P., Pospisil, J.: Human Eye Iris Recognition Using The Mutual Information. Optik (9), 399–404 (2004)Google Scholar
  3. 3.
    Efros, A., Leung, T.: Texture Synthesis by Non-Parametric Sampling. In: Proceedings of the 7th IEEE International Conference on Computer Vision, September 1999, vol. 2, pp. 1033–1038 (1999)Google Scholar
  4. 4.
    Hammersley, J.: Monte Carlo Methods for Solving Multivariate Problems. Annals of New York Academy of Science (86), 844–874 (1960)Google Scholar
  5. 5.
    Huang, Y., Luo, S., Chen, E.: An Efficient Iris Recognition System. In: Proceedings of the First International Conference on Machine Learning and Cybernetics, pp. 450–454 (2002)Google Scholar
  6. 6.
    Huang, J., Wang, Y., Tan, T., Cui, J.: A New Iris Segmentation Method for Iris Recognition System. In: Proceedings of the 17th International Conference on Pattern Recognition, pp. 554–557 (2004)Google Scholar
  7. 7.
    Independent Testing of Iris Recognition Technology - Final Report, International Biometric Group (May 2005)Google Scholar
  8. 8.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing. Science 220(4598), 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Jain, A., Ross, A., Prabhakar, A.: An Introduction to Biometric Recognition. IEEE Transactions on Circuits and Systems for Video Technology 14(1), 4–20 (2004)CrossRefGoogle Scholar
  10. 10.
    Liang, L., Liu, C., Xu, Y., Guo, B., Shum, H.: Real-time Texture Synthesis by Patch-based Sampling. ACM Transactions on Graphics 20(3), 127–150 (2001)CrossRefGoogle Scholar
  11. 11.
    Ma, L., Wang, Y., Tan, T., Zhang, D.: Personal Identification Based on Iris Texture Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1519–1533 (2003)CrossRefGoogle Scholar
  12. 12.
    de Martin-Roche, D., Sanchez-Avila, C., Sanchez-Reillo, R.: Iris ecognition for Biometric Identification using dyadic wavelet transform zero-crossing. In: Proceedings of the IEEE 35th International Conference on Security Technology, pp. 272–277 (2001)Google Scholar
  13. 13.
    Negin, M., Chmielewski, T., Salganicoff, M., Camus, T., Cahn, U., Venetianer, P., Zhang, G.: An Iris Biometric System for Public and Personal Use. Computer 33(2), 70–75 (2000)CrossRefGoogle Scholar
  14. 14.
    Proenca, H., Alexandre, L.: UBIRIS: A Noisy Iris Image Database. In: Proceedings of the International Conference on Image Analysis and Processing, vol. 1, pp. 970–977 (2005)Google Scholar
  15. 15.
    Zhu, Y., Tan, T., Wang, Y.: Biometric Personal Identification Based on Iris Patterns. In: Proceedings of the 15th International Conference on Pattern Recognition, pp. 801–804 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luis E. Garza Castañon
    • 1
  • Saul Montes de Oca
    • 2
  • Rubén Morales-Menéndez
    • 3
  1. 1.Dept. of Mechatronics and Automation
  2. 2.Automation Graduate Program Student
  3. 3.Center for Innovation in Design and TechnologyMonterreyMéxico

Personalised recommendations