A Hybrid Segmentation Method Applied to Color Images and 3D Information

  • Rafael Murrieta-Cid
  • Raúl Monroy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4293)


This paper presents a hybrid segmentation algorithm, which provides a synthetic image description in terms of regions. This method has been used to segment images of outdoor scenes. We have applied our segmentation algorithm to color images and images encoding 3D information. 5 different color spaces were tested. The segmentation results obtained with each color space are compared.


Image Segmentation Color Image Color Space Segmentation Method Segmentation Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Delignon, Y., Marzouki, A., Pieczynki, P.: Estimation of Generalized Mixtures and its Application to Images Segmentation. IEEE Trans. Images Processing 6(10), 1364–1376 (1997)CrossRefGoogle Scholar
  2. 2.
    Deng, Y., Manjunath, B.S.: Unsupervised Segmentation of Color-Texture Regions in Images and Video. IEEE Trans. Pattern Analysis and Machine Intelligence 23, 800–810 (2001)CrossRefGoogle Scholar
  3. 3.
    Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, Chichester (1973)MATHGoogle Scholar
  4. 4.
    Haddad, H., Khatib, M., Lacroix, S., Chatila, R.: Reactive navigation in outdoor environments using potential fields. In: International Conference on Robotics and Automation ICRA 1998, May 1998, pp. 1237–1332 (1998)Google Scholar
  5. 5.
    Huang, Q., Gao, W., Cai, W.: Thresholding Technique with Adaptive Window Selection for Uneven Lighting Image. Pattern recognition letters 26, 801–808 (2005)CrossRefGoogle Scholar
  6. 6.
    Langan, D.A., Modestino, J.W., Zhang, J.: Cluster Validation of Unsupervised Stochastic Model-Based Image Segmentation. IEEE Trans. Images Processing 7(3), 180–195 (1997)Google Scholar
  7. 7.
    Luo, J.B., Guo, E.: Perceptual grouping of segmented regions in color images. Pattern Recognition 36, 2781–2792 (2003)MATHCrossRefGoogle Scholar
  8. 8.
    Murrieta-Cid, R., Briot, M., Vandapel, N.: Landmark Identification and Tracking in Natural Environment. In: Proc IEEE/RSJ Int’l Conf. on Intelligent Robots and Systems, pp. 179–184 (1998)Google Scholar
  9. 9.
    Murrieta-Cid, R., Parra, C., Devy, M., Briot, M.: Scene Modeling from 2D and 3D sensory data acquired from natural environments. In: Proc Int’l Conf. on Advanced Robotics, pp. 221–228 (2001)Google Scholar
  10. 10.
    Murrieta-Cid, R., Parra, C., Devy, M., Tovar, B., Esteves, C.: Building Multi-Level Models: From Landscapes to Landmarks. In: Proc IEEE Int’l Conf. on Robotics and Automation, pp. 4346–4353 (2002)Google Scholar
  11. 11.
    Murrieta-Cid, R., Parra, C., Devy, M.: Visual Navigation in Natural Environments: From Range and Color Data to a Landmark-based Model. Journal Autonomous Robots 13(2), 143–168 (2002)MATHCrossRefGoogle Scholar
  12. 12.
    Otsu, N.: A Threshold Selection Method from Gray-Level Histrograms. IEEE Transaction on Systems, Man and Cybernetics 9(1), 62–66 (1979)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognition 26(9), 1277–1294 (1993)CrossRefGoogle Scholar
  14. 14.
    Parra, C., Murrieta-Cid, R., Devy, M., Briot, M.: 3-D modeling and robot localization from visual and range data in natural scenes. In: Christensen, H.I. (ed.) ICVS 1999. LNCS, vol. 1542, pp. 450–468. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  15. 15.
    Liao, P.-S., et al.: A Fast Algorithm for Multilevel Thresholding. Journal of Information Science and Engineering 17, 713–727 (2001)Google Scholar
  16. 16.
    Saber, E., Tekalp, A.M., Eschbach, R., Knox, K.: Automatic Image Annotation Using Adaptative Color Classification. Graphical Models and Image Processing 58(2), 115–126 (1996)CrossRefGoogle Scholar
  17. 17.
    Shafarenko, L., Petrou, M., Kittler, J.: Automatic Watershed Segmentation of Randomly Textured Color Images. IEEE Trans. Images Processing 6(11), 1530–1544 (1997)CrossRefGoogle Scholar
  18. 18.
    Sezgin, M., Sankur, B.: Survey over Image Thresholding Techniques and Quantitative Performance Evaluation. Journal of Electronic Imaging 13(1), 146–165 (2004)CrossRefGoogle Scholar
  19. 19.
    Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)CrossRefGoogle Scholar
  20. 20.
    Tan, T.S.C., Kittler, J.: Colour texture analysis using colour histogram. IEE Proc.-Vis.Image Signal Process. 141(6), 403–412 (1994)CrossRefGoogle Scholar
  21. 21.
    Vandapel, N., Moorehead, S., Whittaker, W., Chatila, R., Murrieta-Cid, R.: Preliminary results on the use of stereo, color cameras and laser sensors in Antarctica. In: Corke, P., et al. (eds.) Lecture Notes in Control and Information Sciences, vol. 250, pp. 450–468 (1999)Google Scholar
  22. 22.
    Virmajoki, O., Franti, P.: Fast Pairwise Nearest Neighbor based Algorithm for multilevel Thresholding. Journal of Electronic Imaging 12(14), 648–659 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rafael Murrieta-Cid
    • 1
  • Raúl Monroy
    • 2
  1. 1.Centro de Investigación en Matemáticas 
  2. 2.Tec de MonterreyMéxico

Personalised recommendations