Complete FPGA Implemented Evolvable Image Filters

  • Jin Wang
  • Chong Ho Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4293)


This paper describes a complete FPGA implemented intrinsic evolvable system which is employed as a novel approach to automatic design of spatial image filters for two given types of noise. The genotype-phenotype representation of the proposed evolvable system is inspired by the Cartesian Genetic Programming and the function level evolution. The innovative feature of the proposed system is that the whole evolvable system which consists of evolutionary algorithm unit, fitness value calculation unit and reconfigurable function elements array is realized in a same FPGA. A commercial and current FPGA card: Celoxica RC1000 PCI board with a Xilinx Virtex xcv2000E FPGA is employed as our hardware platform. The main motive of our research is to design a general, simple and fast virtual reconfigurable hardware platform with powerful computation ability to achieve intrinsic evolution. The experiment results show that a spatial image filter can be evolved in less than 71 seconds.


Field Programmable Gate Array Memory Bank Pepper Noise Cartesian Genetic Programming Corrupted Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhang, Y., et al.: Digital Circuit Design Using Intrinsic Evolvable Hardware. In: Proc. of the 2004 NASA/DoD Conference on the Evolvable Hardware, pp. 55–63. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  2. 2.
    Glette, K., Torresen, J.: A Flexible On-Chip Evolution System Implemented on a Xilinx Virtex-II Pro Device. In: Moreno, J.M., Madrenas, J., Cosp, J. (eds.) ICES 2005. LNCS, vol. 3637, pp. 66–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Hollingworth, G., et al.: The Intrinsic Evolution of Virtex Devices Through Internet Reconfigurable Logic. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS, vol. 1801, pp. 72–79. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  4. 4.
    Tufte, G., Haddow, P.C.: Prototyping a GA Pipeline for Complete Hardware Evolution. In: Proc. of the first NASA/DoD Workshop on Evolvable Hardware, pp. 18–25. IEEE Computer Society Press, Los Alamitos (1999)CrossRefGoogle Scholar
  5. 5.
    Sekanina, L., Friedl, S.: On Routine Implementation of Virtual Evolvable Devices Using COMBO6. In: Proc. of the 2004 NASA/DoD Conference on Evolvable Hardware, pp. 63–70. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  6. 6.
    Martínek, T., Sekanina, L.: An Evolvable Image Filter: Experimental Evaluation of a Complete Hardware Implementation in FPGA. In: Moreno, J.M., Madrenas, J., Cosp, J. (eds.) ICES 2005. LNCS, vol. 3637, pp. 76–85. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Korenek, J., Sekanina, L.: Intrinsic Evolution of Sorting Networks: A Novel Complete Hardware Implementation for FPGAs. In: Moreno, J.M., Madrenas, J., Cosp, J. (eds.) ICES 2005. LNCS, vol. 3637, pp. 46–55. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Celoxica Ltd.,
  9. 9.
    Sekanina, L.: Image Filter Design with Evolvable Hardware. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 255–266. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Sekanina, L.: Virtual Reconfigurable Circuits for Real-World Applications of Evolvable Hardware. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 186–197. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Martin, P.: A Hardware Implementation of a Genetic Programming System Using FPGAs and Handel-C. Genetic Programming and Evolvable Machines 2(4), 317–343 (2001)MATHCrossRefGoogle Scholar
  13. 13.
    Bensaali, F., et al.: Accelerating Matrix Product on Reconfigurable Hardware for Image Processing Applications. IEE proceedings-Circuits, Devices and Systems 152(3), 236–246 (2005)CrossRefGoogle Scholar
  14. 14.
    Muthukumar, V., Rao, D.V.: Image Processing Algorithms on Reconfigurable Architecture Using HandelC. In: Proc. of the 2004 Euromicro Symposium on Digital System Design, pp. 218–226. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  15. 15.
    Murakawa, M., et al.: Hardware Evolution at Function Level. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 62–71. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  16. 16.
    Wolfram, S.: Universality and Complexity in Cellular Automata. Physica 10D, 1–35 (1984)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jin Wang
    • 1
  • Chong Ho Lee
    • 1
  1. 1.Department of Information Technology & TelecommunicationInha UniversityIncheonKorea

Personalised recommendations