The MineSP Operator for Mining Sequential Patterns in Inductive Databases

  • Edgard Benítez-Guerrero
  • Alma-Rosa Hernández-López
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4293)


This paper introduces MineSP, a relational-like operator to mine sequential patterns from databases. It also shows how an inductive query can be translated into a traditional query tree augmented with MineSP nodes. This query tree is then optimized, choosing the mining algorithm that best suits the constraints specified by the user and the execution environment conditions. The SPMiner prototype system supporting our approach is also presented.


Sequential Pattern Mining Algorithm Pattern Mining Query Optimization Mining Sequential Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Eleventh International Conference on Data Engineering, Taipei, Taiwan, pp. 3–14. IEEE Computer Society Press, Los Alamitos (1995)CrossRefGoogle Scholar
  2. 2.
    Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Performance Improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H.: PrefixSpan: Mining Sequential Patterns Efficiently by Prefix Projected Pattern Growth. In: Proc. 2001 Int. Conf. Data Engineering (ICDE 2001), Heidelberg, Germany, pp. 215–224 (2001)Google Scholar
  4. 4.
    Imielinski, T., Mannila, H.: A Database Perspective on Knowledge Discovery. Communications Of The ACM 39, 58–64 (1996)CrossRefGoogle Scholar
  5. 5.
    De-Raedt, L.: A Perspective on Inductive Databases. SIGKDD Explorations 4(2), 69–77 (2002)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Wojciechowski, M.: Mining Various Patterns in Sequential Data in an SQL-like Manner. In: Eder, J., Rozman, I., Welzer, T. (eds.) ADBIS 1999. LNCS, vol. 1691, pp. 131–138. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Li, H., Liu, C., Orlowska, M.: A Query System for Object-Relational Databases. In: Proceedings of ADC 1998, Perth, Australia, pp. 39–50. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Shintani, T., Kitsuregawa, M.: Mining Algorithms for Sequential Patterns in Parallel: Hash Based Approach. In: Wu, X., Kotagiri, R., Korb, K.B. (eds.) PAKDD 1998. LNCS, vol. 1394, pp. 283–294. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Bayardo, R.: Efficiently Mining Long Patterns from Databases. In: Proc. ACM SIGMOD Int. Conf. on Management of Data, SIGMOD 1998, Seattle, Washington, pp. 85–93. ACM Press, New York (1998)CrossRefGoogle Scholar
  10. 10.
    Garofalakis, M.N., Rastogi, R., Shim, K.: SPIRIT: Sequential Pattern Mining with Regular Expression Constraints. The VLDB Journal, 223–234 (1999)Google Scholar
  11. 11.
    Zaki, M.J.: SPADE: An Efficient Algorithm for Mining Frequent Sequences. Machine Learning 42(1/2), 31–60 (2001)MATHCrossRefGoogle Scholar
  12. 12.
    Morzy, T., Wojciechowski, M., Zakrzewicz, M.: Efficient Constraint-Based Sequential Pattern Mining Using Dataset Filtering Techniques. In: Databases and Information Systems II, Selected Papers from the Fifth International Baltic Conference, pp. 297–310. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  13. 13.
    Seno, M., Karypis, G.: Slpminer: An Algorithm for Finding Frequent Sequential Patterns Using Length Decreasing Support Constraint. Technical Report 02-023, Department of Computer Science, University of Minnesota (2002)Google Scholar
  14. 14.
    Zheng, Q., Xu, K., Ma, S., Lv, W.: The Algorithms of Updating Sequential Patterns. In: Proc. of 5th Int. Workshop on High Performance Data Mining, in conjunction with 2nd SIAM Conference on Data Mining, Washington (2002)Google Scholar
  15. 15.
    Cheung, W., Zaïane, O.R.: Incremental Mining of Frequent Patterns without Candidate Generation or Support Constraint. In: 7th Int. Database Engineering and Applications Symposium (IDEAS 2003), Hong Kong, China, pp. 111–116. IEEE Computer Society Press, Los Alamitos (2003)CrossRefGoogle Scholar
  16. 16.
    Kum, H.C., Pei, J., Wang, W., Duncan, D.: ApproxMAP: Approximate Mining of Consensus Sequential Patterns. In: Proc. 3rd SIAM Int. Conf. on Data Mining, San Francisco, USA (2003)Google Scholar
  17. 17.
    Tumasonis, R., Dzemyda, G.: The Probabilistic Algorithm for Mining Frequent Sequences. In: ADBIS (Local Proceedings) (2004)Google Scholar
  18. 18.
    Chiu, D.Y., Wu, Y.H., Chen, A.L.P.: An Efficient Algorithm for Mining Frequent Sequences by a New Strategy without Support Counting. In: Proc. 20th Int. Conf. on Data Engineering, ICDE 2004, Boston, USA, pp. 375–386. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  19. 19.
    Lin, M.Y., Lee, S.Y.: Fast Discovery of Sequential Patterns through Memory Indexing and Database Partitioning. J. Inf. Sci. Eng. 21(1), 109–128 (2005)Google Scholar
  20. 20.
    Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., Dayal, U.: Multi-Dimensional Sequential Pattern Mining. In: Proc. 10th Int. Conf. on Information and Knowledge Management, Atlanta, Georgia, USA, pp. 81–88. ACM Press, New York (2001)Google Scholar
  21. 21.
    Antunes, C., Oliveira, A.L.: Generalization of Pattern-Growth Methods for Sequential Pattern Mining with Gap Constraints. In: Perner, P., Rosenfeld, A. (eds.) MLDM 2003. LNCS, vol. 2734, pp. 239–251. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  22. 22.
    Leleu, M., Rigotti, C., Boulicaut, J.F., Euvrard, G.: Constraint-Based Mining of Sequential Patterns over Datasets with Consecutive Repetitions. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 303–314. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Meo, R., Psaila, G., Ceri, S.: A New SQL-like Operator for Mining Association Rules. In: Vijayaraman, T.M., Buchmann, A.P., Mohan, C., Sarda, N.L. (eds.) VLDB 1996, Proceedings of 22th International Conference on Very Large Data Bases, Mumbai (Bombay), India, pp. 122–133. Morgan Kaufmann, San Francisco (1996)Google Scholar
  24. 24.
    Gopalan, R., Nuruddin, T., Sucahyo, Y.G.: Building a Data Mining Query Optimizer. In: Proceedings of the Australasian Data Mining Workshop (2002)Google Scholar
  25. 25.
    Morzy, M., Wojciechowski, M., Zakrzewicz, M.: Cost-based Sequential Pattern Query Optimization in Presence of Materialized Results of Previous Queries. In: Proceedings of the Intelligent Information Systems Symposium (IIS 2002), Sopot, Poland, pp. 435–444. Physica-Verlag (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Edgard Benítez-Guerrero
    • 1
  • Alma-Rosa Hernández-López
    • 1
  1. 1.Laboratorio Nacional de Informática AvanzadaXalapaMéxico

Personalised recommendations