Route Selection and Rate Allocation Using Evolutionary Computation Algorithms in Multirate Multicast Networks

  • Sun-Jin Kim
  • Mun-Kee Choi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4293)


In this paper, we simultaneously address the route selection and rate allocation problem in multirate multicast networks. We propose the evolutionary computation algorithm based on a genetic algorithm for this problem and elaborate upon many of the elements in order to improve solution quality and computational efficiency in applying the proposed methods to the problem. These include: the genetic representation, evaluation function, genetic operators and procedure. Additionally, a new method using an artificial intelligent search technique, called the coevolutionary algorithm, is proposed to achieve better solutions. The results of extensive computational simulations show that the proposed algorithms provide high quality solutions and outperform existing approach.


Multicast Tree Multicast Group Rate Allocation High Quality Solution Delay Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jia, X., Wang, L.: Group multicasting routing algorithm by using multiple minimum steiner trees. Computer Comm 20, 750–758 (1997)CrossRefGoogle Scholar
  2. 2.
    Low, C.P., Song, X.: On finding feasible solutions for the delay constrained group multicast routing problem. IEEE Transactions on Computers 51(5), 581–588 (2002)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Shacham, N.: Multipoint communication by hierarchical encoded data. In: Proc. IEEE INFOCOM 1992, vol. 3, pp. 2107–2114 (1992)Google Scholar
  4. 4.
    Fei, Z., Ammar, M., Zegura, E.W.: Multicast server selection: Problems, complexity, and solutions. IEEE Journal on Selected Areas in Communications 20(7), 1399–1413 (2002)CrossRefGoogle Scholar
  5. 5.
    Lorenz, D.H., Orda, A.: Optimal partition of QoS requirements on unicast paths and multicast trees. IEEE/ACM Transactions on Networking 10(1), 102–114 (2002)CrossRefGoogle Scholar
  6. 6.
    Kelly, F.P., Maulloo, A.K., Tan, D.K.H.: Rate control for communication networks: Shadow prices, proportional fairness and stability. J. Oper. Res. Society 49, 237–252 (1998)MATHGoogle Scholar
  7. 7.
    Low, S.H., Lapsley, D.E.: Optimization flow control-I: Basic algorithm and convergence. IEEE/ACM Trans. Networking 7(6), 861–874 (1999)CrossRefGoogle Scholar
  8. 8.
    Kar, K., Sarkar, S., Tassiulas, L.: A scalable low-overhead rate control algorithm for multirate multicast sessions. IEEE Journal on Selected Areas in Communications 20(8), 1541–1557 (2002)CrossRefGoogle Scholar
  9. 9.
    Kunniyur, S., Srikant, R.: End-to-end congestion control schemes: Utility functions, random losses and ECN marks. In: Proc. IEEE INFOCOM 2000, Tel Aviv, Israel, vol. 3, pp. 1323–1332 (2000)Google Scholar
  10. 10.
    Matrawy, A., Lambadaris, I.: A rate adaptation algorithm for multicast sources in priority-based IP networks. IEEE Communications Letters 7(2), 94–96 (2003)CrossRefGoogle Scholar
  11. 11.
    Sarkar, S., Tassiulas, L.: A framework for routing and congestion control for multicast information flows. IEEE Transactions on Information Theory 48(10), 2690–2708 (2002)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Goldberg, D.E.: Genetic Algorithm in Search Optimization & Machine Learning. Addison-Wesley, Readings (1989)Google Scholar
  13. 13.
    Michalewicz, Z.: Genetic Algorithm + Data Structures = Evolution Programs, 2nd edn. Springer, Berlin (1994)Google Scholar
  14. 14.
    Moriarty, D.E., Miikkulainen, R.: Forming neural networks through efficient and adaptive coevolution. Evolutionary Computation 5, 373–399 (1997)CrossRefGoogle Scholar
  15. 15.
    Rosin, C.D., Belew, R.K.: New methods for competitive coevolution. Evolutionary Computation 5, 1–29 (1997)CrossRefGoogle Scholar
  16. 16.
    Maher, M.L., Poon, J.: Modeling design exploration as co-evolution. Microcomputers in Civil Engineering 11, 195–210 (1996)Google Scholar
  17. 17.
    Kim, Y.K., Kim, S.J., Kim, J.Y.: Balancing and sequencing mixed-model U-lines with a coevolutionary algorithm. Production Planning & Control 11(8), 754–764 (2000)CrossRefGoogle Scholar
  18. 18.
    Varian, H.R.: Microeconomic Analysis, 3rd edn. Norton (2002)Google Scholar
  19. 19.
    Ballardie, T., Francis, P., Crowcroft, J.: Core Based Tress (CBT). In: Proc. SIGCOMM 1993, pp. 85–95 (1993)Google Scholar
  20. 20.
    Williamson, B.: Developing IP Multicasting Networks, vol. I. Cisco Press (2000)Google Scholar
  21. 21.
    Davis, L.: Applying adaptive algorithms to epistatic domains. In: Proc. of the Int. Joint Conf. on Artificial Intelligence, pp. 162–164 (1985)Google Scholar
  22. 22.
    Syswerda, G.: A study of reproduction in generational and steady-state genetic algorithms. In: Rawlins, G.J.E. (ed.) Foundations of Genetic Algorithms, pp. 94–101. Morgan Kaufmann, San Marteo (1991)Google Scholar
  23. 23.
    Davidor, Y.: A naturally occurring niche and species phenomenon: the model and first results. In: Belew, R., Booker, L. (eds.) Proceedings of 4th International on Conference Genetic Algorithms, pp. 257–263. Morgan Kaufmann, San Marteo (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sun-Jin Kim
    • 1
  • Mun-Kee Choi
    • 2
  1. 1.Telematics & USN Future Research Team, Telematics & USN Research DivisionElectronics and Telecommunications Research InstituteDaejeonRepublic of Korea
  2. 2.School of IT BusinessInformation and Communications UniversityDaejeonRepublic of Korea

Personalised recommendations