Reconfigurable Networked Fuzzy Takagi Sugeno Control for Magnetic Levitation Case Study

  • P. Quiñones-Reyes
  • H. Benítez-Pérez
  • F. Cárdenas-Flores
  • F. García-Nocetti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4293)


Nowadays the dynamic behavior of a computer network system can be modeled from the perspective of a control system. One strategy to be follow is the real-time modeling of magnetic levitation system. After this representation, next stage is how a control approach can be affected and modified. In that respect, this paper proposes a control reconfiguration strategy from the definition of an Intelligent Fuzzy System computer network reconfiguration. Several stages are including, how computer network takes place, as well as how control techniques are modified using Takagi-Sugeno Fuzzy Control.


Fuzzy Logic Control Early Deadline First Actuator Fault Magnetic Levitation Fault Tolerant Control 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nilsson, J.: Real-Time Control with Delays. PhD. Thesis, Department of Automatic Control, Lund Institute of Technology, Sweden (1998)Google Scholar
  2. 2.
    Izadi-Zamanabadi, R., Blanke, M.: A Ship Propulsion System as a Benchmark for Fault-Tolerant Control. Control Engineering Practice 7, 227–239 (1999)CrossRefGoogle Scholar
  3. 3.
    Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault Tolerant Control. Springer, Heidelberg (2003)MATHGoogle Scholar
  4. 4.
    Benítez-Pérez, H., García-Nocetti, F.: Reconfigurable Distributed Control. Springer, Heidelberg (2005)MATHGoogle Scholar
  5. 5.
    Thompson, H.: Wireless and Internet Communications Technologies for monitoring and Control. Control Engineering Practice 12, 781–791 (2004)CrossRefGoogle Scholar
  6. 6.
    Driankov, D., Hellendoorn, H., Reinfrank, M.: An Introduction to Fuzzy Logic Control. Springer, Heidelberg (1994)Google Scholar
  7. 7.
    Abonyi, J.: Fuzzy Model Identification for Control. Birkhäuser, Basel (2003)MATHGoogle Scholar
  8. 8.
    Frank, T., Kraiss, K.F., Kuhlen, T.: Comparative Analysis of Fuzzy ART and ART-2A Network Clustering Performance. IEEE Trans. on Neural Networks 9(3) (1998)Google Scholar
  9. 9.
    Benítez-Pérez, H., Garcia-Nocetti, F.: Switching Fuzzy Logic Control for a Reconfigurable System Considering Communication Time Delays. In: Proceedings, European Control Conference ECC 2003, CDROM (September 2003)Google Scholar
  10. 10.
    Benítez-Pérez, H., García-Zavala, A., García-Nocetti, F.: Alternative Method based upon Planning Scheduler for On-Line Reconfiguration using System Performance. In: Fifth International Symposium and School on Advanced Distributed Systems ISSADS (2005b)Google Scholar
  11. 11.
    Yi, Z., Heng, P.: Stability of Fuzzy Control Systems with Bounded Uncertain delays. IEEE Trans. On Fuzzy Systems 10(1), 93–97 (2002)Google Scholar
  12. 12.
  13. 13.
    Benítez-Pérez, H., Quiñones-Reyes, P., Mendez-Monroy, E., García-Nocetti, F., Cardenas-Flores, F.: Reconfigurable Fault Tolerant PID Networked Control for Magnetic Levitation Case Study. In: IFAC Symposium on Safeprocess in Beijing, P.R. of China, August 2006 (accepted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • P. Quiñones-Reyes
    • 1
  • H. Benítez-Pérez
    • 2
  • F. Cárdenas-Flores
    • 2
  • F. García-Nocetti
    • 2
  1. 1.Departamento de Sistemas y ComputaciónInstituto Tecnológico de JiquilpanJiquilpan, MichoacánMéxico
  2. 2.Departamento de Ingeniería de Sistemas Computacionales y AutomatizaciónIIMAS, UNAMMéxico D. F.México

Personalised recommendations