Artificial Intelligence Arrives to the 21st Century

  • Adolfo Guzman-Arenas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4293)


The paper follows the path that AI has taken since its beginnings until the brink of the third millennium. New areas, such as Agents, have sprout; other subjects (Learning) have diminished. Areas have separated (Vision, Image Processing) and became independent, self-standing. Some areas have acquired formality and rigor (Vision). Important problems (Spelling, Chess) have been solved. Other problems (Disambiguation) are almost solved or about to be solved. Many challenges (Natural language translation) still remain. A few parts of the near future are sketched through predictions: important problems about to be solved, and the relation of specific AI areas with other areas of Computer Science.


Expert System Optical Flow Knowledge Representation Natural Language Processing Theorem Prove 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bochman, A.: Propositional argumentation and causal reasoning. In: Proc. IJCAI, pp. 388–393 (2005)Google Scholar
  2. 2.
    Chu, F.C., Halpern, J.: Great expectations. Part I: on the customizability of generalized expected utility. Part II: generalized expected utiulity as a universal decision role. In: Proc. IJCAI 2003, pp. 291–296, 297–302 (2003)Google Scholar
  3. 3.
    Contreras, A.: Characterization and measurement of logical properties on qualitative values arranged in hierarchies. Ph. D. thesis in progress. CIC-IPN, MexicoGoogle Scholar
  4. 4.
    Cuevas, A.: Ontology Merging using semantic properties. Ph. D. thesis in progress. CIC-IPN, MexicoGoogle Scholar
  5. 5.
    Etzioni, O., Cafarella, M., Downey, D., Popescu, A.M., Shaked, T., Soderland, Weld, D.S., Yates, A.: Methods for domain-independent information extraction from the web: An experimental comparison. In: Proceedings of the AAAI Conference, pp. 391–398 (2004)Google Scholar
  6. 6.
    Forbus, K.: Qualitative physics: past, present and future. In: Shrobe, H. (ed.) Exploring Artificial Intelligence, pp. 239–290. Morgan Kauffmann, Los Altos (1988)Google Scholar
  7. 7.
    Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg, ISBN 3-540-8; Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)Google Scholar
  8. 8.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220(4598), 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Lenzerinim, M.: Data integration: a theoretical perspective. In: Proc. 21st. ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 233–246 (2002)Google Scholar
  10. 10.
    Lucas, B., Kanade, D.T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of Imaging understanding workshop, pp. 121–130 (1981)Google Scholar
  11. 11.
    McCarthy, J.: Recursive functions of symbolic expressions and their computation by machine, Part I. Communications of the ACM 3(4), 184–195 (1960)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Minsky, M.L., Papert, S.A.: Perceptrons. MIT Press, Cambridge (1968)Google Scholar
  13. 13.
    Moses, J.: MACSYMA - the fifth year. ACM SIGSAM Bulletin 8(3), 105–110 (1974)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Novak, J.D.: A Theory of Education. Cornell University Press, Ithaca, Illinois (1977)Google Scholar
  15. 15.
    Noy, N., Stuckenschmidt, H.: Ontology alignment: An annotated bibliography. In: Kalfoglou, Y., Schorlemmer, M., Sheth, A., Staab, S., Uschold, M. (eds.) Semantic Interoperability and Integration, Schloss Dagstuhl, Germany. Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum (IBFI), number 04391 (2005) (date of citation: 2005-01-01),
  16. 16.
  17. 17.
    Roberts, L.G.: Machine perception of three-dimensional solids. In: Tippet, J. (ed.) Optical and Electrooptical Information Processing, pp. 125–143. MIT Press, Cambridge (1965)Google Scholar
  18. 18.
    Robinson, J.A.: A Machine-Oriented Logic Based on the Resolution Principle. Journal of the ACM 12(1), 23–41 (1965)MATHCrossRefGoogle Scholar
  19. 19.
    Sowa, J.F.: Conceptual Graphs. IBM Journal of Research and Development (1976)Google Scholar
  20. 20.
    Sowa, J.F.: Conceptual Structures. Information Processing in Mind and Machine. Addison-Wesley, Reading (1984)MATHGoogle Scholar
  21. 21.
    Steele, G., Sussman, G.J.: Revised Report on SCHEME, a Dialect of LISP, Memo 452, Artificial Intelligence Laboratory, MIT (1978)Google Scholar
  22. 22.
    Trew, A., Wilson, G.: Past, Present, Parallel: A Survey of Available Parallel Computing Systems. Springer, New York (1991), ISBN 0-387-19664-1Google Scholar
  23. 23.
    Xu, L., Embley, D.: Combining the best of global-as-view and local-as-view for data integration,
  24. 24.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Adolfo Guzman-Arenas
    • 1
  1. 1.Centro de Investigación en ComputaciónInstituto Politécnico NacionalMexico City

Personalised recommendations