Relational Reasoning for Recursive Types and References

  • Nina Bohr
  • Lars Birkedal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4279)


We present a local relational reasoning method for reasoning about contextual equivalence of expressions in a λ-calculus with recursive types and general references. Our development builds on the work of Benton and Leperchey, who devised a nominal semantics and a local relational reasoning method for a language with simple types and simple references. Their method uses a parameterized logical relation. Here we extend their approach to recursive types and general references. For the extension, we build upon Pitts’ and Shinwell’s work on relational reasoning about recursive types (but no references) in nominal semantics. The extension is non-trivial because of general references (higher-order store) and makes use of some new ideas for proving the existence of the parameterized logical relation and for the choice of parameters.


Local Parameter Logical Relation Relational Reasoning Denotational Semantic Store Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmed, A.: Step-indexed syntactic logical relations for recursive and quantified types. In: Sestoft, P. (ed.) ESOP 2006 and ETAPS 2006. LNCS, vol. 3924, pp. 69–83. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Benton, N., Leperchey, B.: Relational reasoning in a nominal semantics for storage. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 86–101. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Birkedal, L., Harper, R.: Constructing interpretations of recursive types in an operational setting. Information and Computation 155, 3–63 (1999)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Koutavas, V., Wand, M.: Bisimulations for untyped imperative objects. In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 146–161. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Koutavas, V., Wand, M.: Small bisimulations for reasoning about higher-order imperative programs. In: POPL 2006: Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp. 141–152. ACM Press, New York (2006)Google Scholar
  6. 6.
    Mason, I.A., Smith, S., Talcott, C.L.: From operational semantics to domain theory. Information and Computation 128(1), 26–47 (1996)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Pitts, A.: Relational properties of domains. Information and Computation 127, 66–90 (1996)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Pitts, A.M., Stark, I.: Observable properties of higher order functions that dynamically create local names, or: What’s new? In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 122–141. Springer, Heidelberg (1993)Google Scholar
  9. 9.
    Reddy, U., Yang, H.: Correctness of data representations involving heap data structures. Science of Computer Programming 50(1-3), 129–160 (2004)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: Proc. of the 17th Annual IEEE Symposium on Logic in Computer Science (LICS 2002), Copenhagen, Denmark, pp. 55–74. IEEE Press, Los Alamitos (2002)CrossRefGoogle Scholar
  11. 11.
    Shinwell, M.: The Fresh Approach: Functional Programming with Names and Binders. PhD thesis, Computer Laboratory, Cambridge (December 2004)Google Scholar
  12. 12.
    Shinwell, M.R., Pitts, A.M.: On a monadic semantics for freshness. Theoretical Computer Science 342, 28–55 (2005)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Sumii, E., Pierce, B.C.: A bisimulation for type abstraction and recursion. In: ACM SIGPLAN–SIGACT Symposium on Principles of Programming Languages (POPL), Long Beach, California (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nina Bohr
    • 1
  • Lars Birkedal
    • 1
  1. 1.IT University of Copenhagen (ITU) 

Personalised recommendations