Computational Secrecy by Typing for the Pi Calculus

  • Martín Abadi
  • Ricardo Corin
  • Cédric Fournet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4279)


We define and study a distributed cryptographic implementation for an asynchronous pi calculus. At the source level, we adapt simple type systems designed for establishing formal secrecy properties. We show that those secrecy properties have counterparts in the implementation, not formally but at the level of bitstrings, and with respect to probabilistic polynomial-time active adversaries. We rely on compilation to a typed intermediate language with a fixed scheduling strategy. While we exploit interesting, previous theorems for that intermediate language, our result appears to be the first computational soundness theorem for a standard process calculus with mobile channels.


Input Process Source Process Mobile Channel Intermediate Language Secrecy Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abadi, M.: Protection in programming-language translations. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 868–883. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Abadi, M.: Security protocols and their properties. In: Bauer, F., Steinbrueggen, R. (eds.) Foundations of Secure Computation. NATO Science Series, pp. 39–60. IOS Press, Amsterdam (2000)Google Scholar
  3. 3.
    Abadi, M., Blanchet, B.: Secrecy types for asymmetric communication. Theoretical Computer Science 298(3), 387–415 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Abadi, M., Fournet, C., Gonthier, G.: Authentication primitives and their compilation. In: 27th ACM Symposium on Principles of Programming Languages, pp. 302–315 (January 2000)Google Scholar
  5. 5.
    Abadi, M., Fournet, C., Gonthier, G.: Secure implementation of channel abstractions. Information and Computation 174(1), 37–83 (2002)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus. Information and Computation 148(1), 1–70 (1999)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational soundness of formal encryption). Journal of Cryptology 15(2), 103–127 (2002)MATHMathSciNetGoogle Scholar
  8. 8.
    Adão, P., Fournet, C.: Cryptographically sound implementations for communicating processes. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 83–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Backes, M., Pfitzmann, B.: Symmetric encryption in a simulatable Dolev-Yao style cryptographic library. In: 17th IEEE Computer Security Foundations Workshop, pp. 204–218 (2004)Google Scholar
  10. 10.
    Backes, M., Pfitzmann, B.: Relating symbolic and cryptographic secrecy. In: IEEE Symposium on Security and Privacy, pp. 171–182 (2005)Google Scholar
  11. 11.
    Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with nested operations. In: 10th ACM Conference on Computer and Communications Security, pp. 220–230 (2003)Google Scholar
  12. 12.
    Backes, M., Pfitzmann, B., Waidner, M.: Symmetric authentication within a simulatable cryptographic library. International Journal of Information Security 4(3), 135–154 (2005)CrossRefGoogle Scholar
  13. 13.
    Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, p. 453. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Cardelli, L., Ghelli, G., Gordon, A.D.: Secrecy and group creation. Information and Computation 196(2), 127–155 (2005)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization policies. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 141–156. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Gordon, A.D., Jeffrey, A.S.A.: Types and effects for asymmetric cryptographic protocols. J. Computer Security 12(3/4), 435–484 (2004)Google Scholar
  17. 17.
    Laud, P.: Secrecy types for a simulatable cryptographic library. In: 12th ACM Conference on Computer and Communications Security, pp. 26–35 (2005); Also Research Report IT-LU-O-162-050823, Cybernetica (August 2005)Google Scholar
  18. 18.
    Merro, M., Sangiorgi, D.: On asynchrony in name-passing calculi. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 856–867. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  19. 19.
    Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of active adversaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133–151. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martín Abadi
    • 1
    • 2
  • Ricardo Corin
    • 1
    • 3
  • Cédric Fournet
    • 1
  1. 1.Microsoft Research 
  2. 2.University of CaliforniaSanta Cruz
  3. 3.University of Twente 

Personalised recommendations