Advertisement

Widening Polyhedra with Landmarks

  • Axel Simon
  • Andy King
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4279)

Abstract

The abstract domain of polyhedra is sufficiently expressive to be deployed in verification. One consequence of the richness of this domain is that long, possibly infinite, sequences of polyhedra can arise in the analysis of loops. Widening and narrowing have been proposed to infer a single polyhedron that summarises such a sequence of polyhedra. Motivated by precision losses encountered in verification, we explain how the classic widening/narrowing approach can be refined by an improved extrapolation strategy. The insight is to record inequalities that are thus far found to be unsatisfiable in the analysis of a loop. These so-called landmarks hint at the amount of widening necessary to reach stability. This extrapolation strategy, which refines widening with thresholds, can infer post-fixpoints that are precise enough not to require narrowing. Unlike previous techniques, our approach interacts well with other domains, is fully automatic, conceptually simple and precise on complex loops.

Keywords

Convex Polyhedron Loop Iteration Abstract Interpretation Abstract Domain Widening Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bagnara, R., Hill, P., Ricci, E., Zaffanella, E.: Precise Widening Operators for Convex Polyhedra. Science of Computer Programming 58(1-2), 28–56 (2005)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bagnara, R., Hill, P.M., Zaffanella, E.: Not necessarily closed convex polyhedra and the double desciption method. Formal Asp. Comput. 17(2), 222–257 (2005)MATHCrossRefGoogle Scholar
  3. 3.
    Benoy, P.M.: Polyhedral Domains for Abstract Interpretation in Logic Programming. PhD thesis, Computing Lab., Univ. of Kent, Canterbury, UK (January 2002)Google Scholar
  4. 4.
    Besson, F., Jensen, T., Talpin, J.-P.: Polyhedral analysis for synchronous languages. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 51–68. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival, X.: Design and implementation of a special-purpose static program analyzer for safety-critical real-time embedded software. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 85–108. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Bourdoncle, F.: Efficient Chaotic Iteration Strategies with Widenings. In: Pottosin, I.V., Bjorner, D., Broy, M. (eds.) FMP&TA 1993. LNCS, vol. 735, pp. 128–141. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  7. 7.
    Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Programs. In: Second International Symposium on Programming, Dunod, Paris, France, pp. 106–130 (1976)Google Scholar
  8. 8.
    Cousot, P., Cousot, R.: Abstract Interpretation and Application to Logic Programs. Journal of Logic Programming 13(2-3), 103–179 (1992)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cousot, P., Cousot, R.: Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpretation. In: Bruynooghe, M., Wirsing, M. (eds.) PLILP 1992. LNCS, vol. 631, pp. 269–295. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  10. 10.
    Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Constraints among Variables of a Program. In: Symposium on Principles of Programming Languages, Tucson, Arizona, pp. 84–97. ACM Press, New York (1978)Google Scholar
  11. 11.
    Dor, N., Rodeh, M., Sagiv, M.: Cleanness checking of string manipulations in C programs via integer analysis. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 194–212. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Gopan, D., Reps, T.: Lookahead widening. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 452–466. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Gulavani, B.S., Rajamani, S.K.: Counterexample driven refinement for abstract interpretation. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 474–488. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Halbwachs, N.: Détermination Automatique de Relations Linéaires Vérifiées par les Variables d’un Programme. Thèse de 3ème icle d’informatique, Université scientifique et médicale de Grenoble, Grenoble, France (March 1979)Google Scholar
  15. 15.
    Halbwachs, N., Proy, Y.-E., Roumanoff, P.: Verification of Real-Time Systems using Linear Relation Analysis. Formal Methods in System Design 11(2), 157–185 (1997)CrossRefGoogle Scholar
  16. 16.
    Harvey, W.: Computing Two-Dimensional Integer Hulls. SIAM Journal on Computing 28(6), 2285–2299 (1999)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Heintze, N., Tardieu, O.: Ultra-fast Aliasing Analysis using CLA: A Million Lines of C Code in a Second. In: SIGPLAN Conference on Programming Language Design and Implementation, pp. 254–263 (2001)Google Scholar
  18. 18.
    Miné, A.: The Octagon Abstract Domain. In: Eighth Working Conference on Reverse Engineering, pp. 310–319. IEEE Computer Society Press, Los Alamitos (2001)CrossRefGoogle Scholar
  19. 19.
    Sankaranarayanan, S., Colón, M., Sipma, H.B., Manna, Z.: Efficient strongly relational polyhedral analysis. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 111–125. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Simon, A., King, A.: Analyzing string buffers in C. In: Kirchner, H., Ringeissen, C. (eds.) AMAST 2002. LNCS, vol. 2422, pp. 365–379. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  21. 21.
    Simon, A., King, A.: Exploiting sparsity in polyhedral analysis. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 336–351. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Simon, A., King, A., Howe, J.M.: Two Variables per Linear Inequality as an Abstract Domain. In: Leuschel, M.A. (ed.) LOPSTR 2002. LNCS, vol. 2664, pp. 71–89. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Steensgaard, B.: Points-to Analysis in Almost Linear Time. In: Symposium on the Principles of Progamming Languages, pp. 32–41 (1996)Google Scholar
  24. 24.
    Su, Z., Wagner, D.: A Class of Polynomially Solvable Range Constraints for Interval Analysis without Widenings. Theor. Comput. Sci. 345(1), 122–138 (2005)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Wagner, D.: Static analysis and computer security: New techniques for software assurance. PhD thesis, University of California at Berkeley (December 2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Axel Simon
    • 1
  • Andy King
    • 1
  1. 1.Computing LaboratoryUniversity of KentCanterburyUK

Personalised recommendations