Robust Audio Watermarking Based on Low-Order Zernike Moments

  • Shijun Xiang
  • Jiwu Huang
  • Rui Yang
  • Chuntao Wang
  • Hongmei Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4283)

Abstract

Extensive testing shows that the audio Zernike moments in lower orders are very robust to common signal processing operations, such as MP3 compression, low-pass filtering, etc. Based on the observations, in this paper, a robust watermark scheme is proposed by embedding the bits into the low-order moments. By analyzing and deducting the linear relationship between the audio amplitude and moments, watermarking the low-order moments is achieved in time domain by scaling sample values directly. Thus, the degradation in audio reconstruction from a limited number of watermarked Zernike moments is avoided. Experimental works show that the proposed algorithm achieves strong robustness performance due to the superiorities of exploited low-order moments.

Keywords

Audio Signal Zernike Moment Robustness Performance Audio Watermark Watermark Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Teh, C.-H., Chin, R.T.: On Image Analysis by the Methods of Moments. IEEE Transaction on Pattern Analysis and Machine Intelligence 10, 496–513 (1988)MATHCrossRefGoogle Scholar
  2. 2.
    Khotanzad, Hong, Y.H.: Invariant Image Recognition by Zernike Moments. IEEE Transaction on Pattern Analysis and Machine Intelligence 12, 489–497 (1990)CrossRefGoogle Scholar
  3. 3.
    Farzam, M., Shahram Shirani, S.: A Robust Multimedia Watermarking Technique Using Zernike Transform. In: Proc. of IEEE International Workshop Multimedia Signal Processing, pp. 529–534 (2001)Google Scholar
  4. 4.
    Kim, H.S., Lee, H.K.: Invariant Image Watermark Using Zernike Moments. IEEE Transaction on Circuits and Systems for Video Technology 13(8), 766–775 (2003)CrossRefGoogle Scholar
  5. 5.
    Xin, Y.Q., Liao, S., Pawlak, M.: A Multibit Geometrically Robust Image Watermark Based on Zernike Moments. In: Proc. of the 17th International Conference on Pattern Recognition, pp. 861–864 (2004)Google Scholar
  6. 6.
    Chen, J., Yao, H.X., Gao, W., Liu, S.H.: A Robust Watermarking Method Based on Wavelet and Zernike Transform. In: Proc. of the 2004 International Symposium on Circuits and Systems, vol. 2, pp. 23–26 (2004)Google Scholar
  7. 7.
    Liu, H.M., Lin, J.L., Huang, J.W.: Image Authentication Using Content Based Watermark. In: Proc. of the 2004 International Symposium on Circuits and Systems, pp. 4014–4017 (2005)Google Scholar
  8. 8.
    Liao, S.X., Pawlak, M.: On the Accuracy of Zernike Moments for Image Analysis. IEEE Transaction on Pattern Analysis and Machine Intelligence 20, 1358–1364 (1998)CrossRefGoogle Scholar
  9. 9.
    Lie, W.N., Chang, L.C.: Robust and High-Quality Time-Domain Audio Watermarking Subject to Psychoacoustic Masking. In: Proc. of IEEE International Symposium on Circuits and Systems, vol. 2, pp. 45–48 (2002)Google Scholar
  10. 10.
    Yeo, I.K., Kim, H.J.: Modified patchwork algorithm: A Novel Audio Watermarking Scheme. IEEE Transaction on Speech and Audio Processing 11, 381–386 (2003)CrossRefGoogle Scholar
  11. 11.
    Wu, S.Q., Huang, J.W., Huang, D.R., Shi, Y.Q.: Efficiently Self-Synchronized Audio Watermarking for Assured Audio Data Transmission. IEEE Transactions on Broadcasting 51, 69–76 (2005)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    International Telecommunication Union: Method for Objective Measurements of Perceived Audio Quality (PEAQ). ITU-R BS 1387 (1998)Google Scholar
  14. 14.
    Arnold, M.: Subjective and Objective Quality Evaluation of Watermarked Audio Tracks. Web Delivering of Music, 161–167 (2002)Google Scholar
  15. 15.
    Steinebach, M., Petitcolas, F.A.P., Raynal, F., Dittmann, J., Fontaine, C., Seibel, S., Fates, N., Ferri, L.C.: StirMark benchmark: audio watermarking attacks. In: Proc. of International Conference on Information Technology: Coding and Computing, pp. 49–54 (2001)Google Scholar
  16. 16.
  17. 17.
    Xiang, S.J., Huang, J.W.: Analysis of D/A and A/D Conversions in Quantization-Based Audio Watermarking. International Journal of Network Security 3, 230–238 (2006)Google Scholar
  18. 18.
    Xiang, S., Huang, J., Yang, R.: Time-scale invariant audio watermarking based on the statistical features in time domain. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437, pp. 93–108. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Lang, A., Dittmann, J.: Profiles for Evaluation - the Usage of Audio WET. In: Proc. of SPIE Symposium on Electronic Imaging vol. 6072, 60721J (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shijun Xiang
    • 1
    • 2
  • Jiwu Huang
    • 1
    • 2
  • Rui Yang
    • 1
    • 2
  • Chuntao Wang
    • 1
    • 2
  • Hongmei Liu
    • 1
    • 2
  1. 1.School of Information Science and TechnologySun Yat-sen UniversityGuangzhouChina
  2. 2.Guangdong Key Laboratory of Information Security TechnologyGuangzhouChina

Personalised recommendations