Skip to main content

An Eigenbackground Subtraction Method Using Recursive Error Compensation

  • Conference paper
Advances in Multimedia Information Processing - PCM 2006 (PCM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4261))

Included in the following conference series:

Abstract

Eigenbackground subtraction is a commonly used method for moving object detection. The method uses the difference between an input image and the reconstructed background image for detecting foreground objects based on eigenvalue decomposition. In the method, foreground regions are represented in the reconstructed image using eigenbackground in the sense of least mean squared error minimisation. This results in errors that are spread over the entire reconstructed reference image. This will also result in degradation of quality of reconstructed background leading to inaccurate moving object detection. In order to compensate these regions, an efficient method is proposed by using recursive error compensation and an adaptively computed threshold. Experiments were conducted on a range of image sequences with variety of complexity. Performance were evaluated both qualitatively and quantitatively. Comparisons made with two existing methods have shown better approximations of the background images and more accurate detection of foreground objects have been achieved by the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koller, D., Weber, J., Huang, T., Malik, J., Ogasawara, G., Rao, B., Russell, S.: Towards robust automatic traffic scene analysis in real-time. In: Proceedings of the International Conference on Pattern Recognition, Israel, pp. 126–131 (1994)

    Google Scholar 

  2. Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 780–785 (1997)

    Article  Google Scholar 

  3. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 747–757 (2000)

    Article  Google Scholar 

  4. Lee, D.S.: Effective gaussian mixture learning for video background subtraction. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(5), 827–832 (2005)

    Article  Google Scholar 

  5. Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and foreground modeling using non-parametric kernel density estimation for visual surveillance. Proceedings of the IEEE 90(7), 1151–1163 (2002)

    Article  Google Scholar 

  6. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: Principles and practice of background maintenance. In: ICCV (1), pp. 255–261 (1999)

    Google Scholar 

  7. Oliver, N.M., Rosario, B., Pentland, A.: A bayesian computer vision system for modeling human interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 831–843 (2000)

    Article  Google Scholar 

  8. Li, Y.: On incremental and robust subspace learning. Pattern Recognition 37, 1509–1518 (2004)

    Article  MATH  Google Scholar 

  9. Skočaj, D., Bischof, H., Leonardis, A.: A robust PCA algorithm for building representations from panoramic images. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 761–775. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Skocaj, D., Leonardis, A.: Weighted and robust incremental method for subspace learning. In: ICCV 2003, pp. 1494–1501 (2003)

    Google Scholar 

  11. Park, J.-S., Oh, Y.H., Ahn, S.C., Lee, S.-W.: Glasses removal from facial image using recursive error compensation. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(5), 805–811 (2005)

    Article  Google Scholar 

  12. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  13. Moghaddam, B., Pentland, A.: Probabilistic visual learning for object detection. In: International Conference on Computer Vision (ICCV 1995), pp. 786–793 (1995)

    Google Scholar 

  14. Li, L., Huang, W., Gu, I.Y.H., Tian, Q.: Statistical modeling of complex backgrounds for foreground object detection. IEEE Transactions on Image Processing 13(11), 1459–1472 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xu, Z., Shi, P., Gu, I.YH. (2006). An Eigenbackground Subtraction Method Using Recursive Error Compensation. In: Zhuang, Y., Yang, SQ., Rui, Y., He, Q. (eds) Advances in Multimedia Information Processing - PCM 2006. PCM 2006. Lecture Notes in Computer Science, vol 4261. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11922162_89

Download citation

  • DOI: https://doi.org/10.1007/11922162_89

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-48766-1

  • Online ISBN: 978-3-540-48769-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics