Advertisement

Color Image Enhancement Using the Laplacian Pyramid

  • Yeul-Min Baek
  • Hyoung-Joon Kim
  • Jin-Aeon Lee
  • Sang-Guen Oh
  • Whoi-Yul Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4261)

Abstract

we present a color image enhancement method. The proposed method enhances the brightness and contrast of an input image using the low pass and band pass images in Laplacian pyramid, respectively. For color images, our method enhances the color tone by increasing the saturation adpatively according to the intensity of an input image. The major parameters required in our method are automatically set by the human preference data, therefore, the proposed method runs fully automatically without user interaction. Moreover, due to the simplicity and efficiency of the proposed method, a real time implementation and the enhanced results of the image quality was validated through the experiments on various images and video sequences.

Keywords

Video Sequence Color Image Input Image Histogram Equalization Human Preference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Forrest, A.K.: Colour Histogram Equalisation of Multichannel Images. IEE Proceedings on Vision, Image and Signal Processing 152(6), 677–686 (2005)CrossRefGoogle Scholar
  2. 2.
    Yang, S., Oh, J.H., Park, Y.: Contrast Enhancement using Histogram Equalization with Bin Underflow and Bin Overflow. In: International Conference on Image Processing, vol. 1, pp. 881–884 (2003)Google Scholar
  3. 3.
    Rahman, Z., Jobson, D.J., Woodell, G.A.: A Multiscale Retinex for Color Rendition and Dynamic Range Compression. In: SPIE Applications of Digital Image Processing XIX, vol. 2847, pp. 183–191 (1996)Google Scholar
  4. 4.
    Dippel, S., Stahl, M., Wiemker, R., Blaffert, T.: Multiscale Contrast Enhancement for Radiographies: Laplacian Pyramid versus Fast Wavelet Transform. IEEE Transaction on Medical Imaging 21(4), 343–353 (2002)CrossRefGoogle Scholar
  5. 5.
    Huang, K., Wang, Q., Wu, Z.: Color Image Enhancement and Evaluation Algorithm based on Human Visual System. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. 721–724 (2004)Google Scholar
  6. 6.
    Pattanaik, S.N., Ferwerda, J.A., Fairchild, M.D., Greenberg, D.P.: A Multiscale Model of Adaptation and Spatial Vision for Realistic Image Display. In: ACM Special Interest Group on Computer Graphics and Interactive Techniques, pp. 287–298 (1998)Google Scholar
  7. 7.
    Rahman, Z., Jobson, D.J., Woodell, G.A.: Retinex Processing for Automatic Image Enhancement. Journal of Electronic Imaging 13(1), 100–110 (2004)CrossRefGoogle Scholar
  8. 8.
    Tao, L., Tomkins, R., Asari, V.K.: An Illuminance-Reflectance Model for Nonlinear Enhancement of Color Images. Computer Vision and Pattern Recognition 3, 159–159 (2005)Google Scholar
  9. 9.
    Huber, P.J.: Robust Statistics. Wiley, New York (1981)MATHCrossRefGoogle Scholar
  10. 10.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 2nd edn. Prentice Hall, Englewood Cliffs (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yeul-Min Baek
    • 1
  • Hyoung-Joon Kim
    • 1
  • Jin-Aeon Lee
    • 2
  • Sang-Guen Oh
    • 2
  • Whoi-Yul Kim
    • 1
  1. 1.Division of Electrical and Computer EngineeringHanyang UniversitySeoulKorea
  2. 2.Samsung ElectronicsYongin-si, Gyeonggi-doKorea

Personalised recommendations