Stronger Reduction Criteria for Local First Search

  • Marcos E. Kurbán
  • Peter Niebert
  • Hongyang Qu
  • Walter Vogler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4281)


Local First Search (LFS) is a partial order technique for reducing the number of states to be explored when trying to decide reachability of a local (component) property in a parallel system; it is based on an analysis of the structure of the partial orders of executions in such systems. Intuitively, LFS is based on a criterion that allows to guide the search for such local properties by limiting the “concurrent progress” of components.

In this paper, we elaborate the analysis of the partial orders in question and obtain related but significantly stronger criteria for reductions, show their relation to the previously established criterion, and discuss the algorithmics of the proposed improvement. Our contribution is both fundamental in providing better insights into LFS and practical in providing an improvement of high potential, as is illustrated by experimental results.


Partial Order Model Check Transition System Local Property Maximal Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bornot, S., Morin, R., Niebert, P., Zennou, S.: Black box unfolding with local first search. In: Katoen, J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 386–400. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT Press, Cambridge (1990)MATHGoogle Scholar
  3. 3.
    Diekert, V., Rozemberg, G. (eds.): The Book of Traces. World Scientific Publishing Co. Pte. Ltd., Singapore (1995)Google Scholar
  4. 4.
    Esparza, J., Romer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 87–106. Springer, Heidelberg (1996)Google Scholar
  5. 5.
    Godefroid, P.: Using partial orders to improve automatic verification methods. In: Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 176–185. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  6. 6.
    Godefroid, P., Peled, D., Staskauskas, M.: Using partial-order methods in the formal validation of industrial concurrent programs. IEEE Trans. Softw. Eng. 22(7), 496–507 (1996)CrossRefGoogle Scholar
  7. 7.
    Godefroid, P., Pirottin, D.: Refining dependencies improves partial-order verification methods (extended abstract). In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 438–449. Springer, Heidelberg (1993)Google Scholar
  8. 8.
    Godefroid, P., Wolper, P.: A partial approach to model checking. In: Logic in Computer Science, pp. 406–415 (1991)Google Scholar
  9. 9.
    Holzmann, G., Peled, D.: Partial order reduction of the state space. In: First SPIN Workshop, Montrèal, Quebec (1995)Google Scholar
  10. 10.
    McMillan, K.L.: A technique of state space search based on unfolding. Form. Methods Syst. Des. 6(1), 45–65 (1995)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Niebert, P., Huhn, M., Zennou, S., Lugiez, D.: Local first search - A new paradigm for partial order reductions. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 396–410. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Niebert, P., Qu, H.: The Implementation of Mazurkiewicz Traces in POEM. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 508–522. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Peled, D.: All from one, one for all: on model checking using representatives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, Springer, Heidelberg (1993)Google Scholar
  14. 14.
    Penczek, W., Kuiper, R.: Traces and logic. In: Diekert and Rozemberg [3]Google Scholar
  15. 15.
    Reichmeider, P.F.: The Equivalence of Some Combinatorial Matching Theorems. Polygonal Pub. House (1985)Google Scholar
  16. 16.
    Valmari, A.: Stubborn sets for reduced state space generation. In: Applications and Theory of Petri Nets, pp. 491–515 (1989)Google Scholar
  17. 17.
    Valmari, A.: On-the-fly verification with stubborn sets. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 397–408. Springer, Heidelberg (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Marcos E. Kurbán
    • 1
  • Peter Niebert
    • 2
  • Hongyang Qu
    • 2
  • Walter Vogler
    • 3
  1. 1.Formal Methods and Tools GroupUniversity of Twente, EWI INFAE, EnschedeThe Netherlands
  2. 2.Laboratoire d’Informatique Fondamentale de MarseilleUniversité de ProvenceMarseille
  3. 3.Institut für InformatikUniversität AugsburgAugsburg

Personalised recommendations